Amazon cover image
Image from Amazon.com

D-Modules, Perverse Sheaves, and Representation Theory [electronic resource] / edited by Ryoshi Hotta, Kiyoshi Takeuchi, Toshiyuki Tanisaki.

Contributor(s): Series: Progress in Mathematics ; 236Publisher: Boston, MA : Birkhäuser Boston, 2008Description: XI, 412 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780817645236
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 512 23
LOC classification:
  • QA150-272
Online resources:
Contents:
D-Modules and Perverse Sheaves -- Preliminary Notions -- Coherent D-Modules -- Holonomic D-Modules -- Analytic D-Modules and the de Rham Functor -- Theory of Meromorphic Connections -- Regular Holonomic D-Modules -- Riemann–Hilbert Correspondence -- Perverse Sheaves -- Representation Theory -- Algebraic Groups and Lie Algebras -- Conjugacy Classes of Semisimple Lie Algebras -- Representations of Lie Algebras and D-Modules -- Character Formula of HighestWeight Modules -- Hecke Algebras and Hodge Modules.
In: Springer eBooksSummary: D-modules continues to be an active area of stimulating research in such mathematical areas as algebra, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. Significant concepts and topics that have emerged over the last few decades are presented, including a treatment of the theory of holonomic D-modules, perverse sheaves, the all-important Riemann-Hilbert correspondence, Hodge modules, and the solution to the Kazhdan-Lusztig conjecture using D-module theory. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, and representation theory.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

D-Modules and Perverse Sheaves -- Preliminary Notions -- Coherent D-Modules -- Holonomic D-Modules -- Analytic D-Modules and the de Rham Functor -- Theory of Meromorphic Connections -- Regular Holonomic D-Modules -- Riemann–Hilbert Correspondence -- Perverse Sheaves -- Representation Theory -- Algebraic Groups and Lie Algebras -- Conjugacy Classes of Semisimple Lie Algebras -- Representations of Lie Algebras and D-Modules -- Character Formula of HighestWeight Modules -- Hecke Algebras and Hodge Modules.

D-modules continues to be an active area of stimulating research in such mathematical areas as algebra, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. Significant concepts and topics that have emerged over the last few decades are presented, including a treatment of the theory of holonomic D-modules, perverse sheaves, the all-important Riemann-Hilbert correspondence, Hodge modules, and the solution to the Kazhdan-Lusztig conjecture using D-module theory. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, and representation theory.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu