Amazon cover image
Image from Amazon.com

Sperm Acrosome Biogenesis and Function During Fertilization [electronic resource] / edited by Mariano G. Buffone.

Contributor(s): Series: Advances in Anatomy, Embryology and Cell Biology ; 220Publisher: Cham : Springer International Publishing : Imprint: Springer, 2016Description: VII, 172 p. 19 illus., 16 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319305677
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 612 23
LOC classification:
  • QP34-38
Online resources:
Contents:
Preface -- The acrosome reaction: a historical perspective -- The acrosomal matrix -- Role of ion channels in the sperm acrosome reaction -- The molecules of sperm exocytosis -- Sperm capacitation and acrosome reaction in mammalian sperm -- Lipid regulation of acrosome exocytosis -- Role of actin cytoskeleton during mammalian sperm acrosomal exocytosis -- Site of mammalian sperm acrosome reaction.
In: Springer eBooksSummary: Over the last decades, acrosomal exocytosis (also called the “acrosome reaction”) has been recognized as playing an essential role in fertilization. Secretion of this granule is an absolute requirement for physiological fertilization. In recent years, the study of mammalian acrosomal exocytosis has yielded some major advances that challenge the long-held, general paradigms in the field. Principally, the idea that sperm must be acrosome-intact to bind to the zona pellucida of unfertilized eggs, based largely on in vitro fertilization studies of mouse oocytes denuded of the cumulus oophorus, has been overturned by experiments using state-of-the-art imaging of cumulus-intact oocytes and fertilization experiments where eggs were reinseminated by acrosome-reacted sperm recovered from the perivitelline space of zygotes. From a molecular point of view, acrosome exocytosis is a synchronized and tightly regulated process mediated by molecular mechanisms that are homologous to those reported in neuroendocrinal cell secretions. The authors provide a broader perspective, focusing on a limited number of important topics that are essential for understanding the molecular mechanisms governing this step in the fertilization process. They also discuss molecular aspects such as the signaling pathways leading to exocytosis, including the participation of ion channels, lipids, the fusion machinery proteins and the actin cytoskeleton as well as cellular aspects such as the site of acrosomal exocytosis and the use of gene-manipulated animals to study this process. .
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Preface -- The acrosome reaction: a historical perspective -- The acrosomal matrix -- Role of ion channels in the sperm acrosome reaction -- The molecules of sperm exocytosis -- Sperm capacitation and acrosome reaction in mammalian sperm -- Lipid regulation of acrosome exocytosis -- Role of actin cytoskeleton during mammalian sperm acrosomal exocytosis -- Site of mammalian sperm acrosome reaction.

Over the last decades, acrosomal exocytosis (also called the “acrosome reaction”) has been recognized as playing an essential role in fertilization. Secretion of this granule is an absolute requirement for physiological fertilization. In recent years, the study of mammalian acrosomal exocytosis has yielded some major advances that challenge the long-held, general paradigms in the field. Principally, the idea that sperm must be acrosome-intact to bind to the zona pellucida of unfertilized eggs, based largely on in vitro fertilization studies of mouse oocytes denuded of the cumulus oophorus, has been overturned by experiments using state-of-the-art imaging of cumulus-intact oocytes and fertilization experiments where eggs were reinseminated by acrosome-reacted sperm recovered from the perivitelline space of zygotes. From a molecular point of view, acrosome exocytosis is a synchronized and tightly regulated process mediated by molecular mechanisms that are homologous to those reported in neuroendocrinal cell secretions. The authors provide a broader perspective, focusing on a limited number of important topics that are essential for understanding the molecular mechanisms governing this step in the fertilization process. They also discuss molecular aspects such as the signaling pathways leading to exocytosis, including the participation of ion channels, lipids, the fusion machinery proteins and the actin cytoskeleton as well as cellular aspects such as the site of acrosomal exocytosis and the use of gene-manipulated animals to study this process. .

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu