Amazon cover image
Image from Amazon.com

BioInformation Processing [electronic resource] : A Primer on Computational Cognitive Science / by James K. Peterson.

By: Contributor(s): Series: Cognitive Science and TechnologyPublisher: Singapore : Springer Singapore : Imprint: Springer, 2016Edition: 1st ed. 2016Description: XXXV, 570 p. 165 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789812878717
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 006.3 23
LOC classification:
  • Q342
Online resources:
Contents:
BioInformation Processing -- The Diffusion Equation -- Integral Transforms -- The Time Dependent Cable Solution -- Mammalian Neural Structure -- Abstracting Principles of Computation -- Abstracting Principles of Computation -- Second Messenger Diffusion Pathways -- The Abstract Neuron Model -- Emotional Models -- Generation of Music Data: J. Peterson and L. Dzuris -- Generation of Painting Data: J. Peterson, L. Dzuris and Q. Peterson -- Modeling Compositional Design -- Networks Of Excitable Neurons -- Training The Model -- Matrix Feed Forward Networks -- Chained Feed Forward Architectures -- Graph Models -- Address Based Graphs -- Building Brain Models -- Models of Cognitive Dysfunction -- Conclusions -- Background Reading.
In: Springer eBooksSummary: This book shows how mathematics, computer science and science can be usefully and seamlessly intertwined. It begins with a general model of cognitive processes in a network of computational nodes, such as neurons, using a variety of tools from mathematics, computational science and neurobiology. It then moves on to solve the diffusion model from a low-level random walk point of view. It also demonstrates how this idea can be used in a new approach to solving the cable equation, in order to better understand the neural computation approximations. It introduces specialized data for emotional content, which allows a brain model to be built using MatLab tools, and also highlights a simple model of cognitive dysfunction.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

BioInformation Processing -- The Diffusion Equation -- Integral Transforms -- The Time Dependent Cable Solution -- Mammalian Neural Structure -- Abstracting Principles of Computation -- Abstracting Principles of Computation -- Second Messenger Diffusion Pathways -- The Abstract Neuron Model -- Emotional Models -- Generation of Music Data: J. Peterson and L. Dzuris -- Generation of Painting Data: J. Peterson, L. Dzuris and Q. Peterson -- Modeling Compositional Design -- Networks Of Excitable Neurons -- Training The Model -- Matrix Feed Forward Networks -- Chained Feed Forward Architectures -- Graph Models -- Address Based Graphs -- Building Brain Models -- Models of Cognitive Dysfunction -- Conclusions -- Background Reading.

This book shows how mathematics, computer science and science can be usefully and seamlessly intertwined. It begins with a general model of cognitive processes in a network of computational nodes, such as neurons, using a variety of tools from mathematics, computational science and neurobiology. It then moves on to solve the diffusion model from a low-level random walk point of view. It also demonstrates how this idea can be used in a new approach to solving the cable equation, in order to better understand the neural computation approximations. It introduces specialized data for emotional content, which allows a brain model to be built using MatLab tools, and also highlights a simple model of cognitive dysfunction.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu