Amazon cover image
Image from Amazon.com

Hardware/Software Co-Design and Optimization for Cyberphysical Integration in Digital Microfluidic Biochips [electronic resource] / by Yan Luo, Krishnendu Chakrabarty, Tsung-Yi Ho.

By: Contributor(s): Publisher: Cham : Springer International Publishing : Imprint: Springer, 2015Description: XII, 197 p. 98 illus., 60 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319090061
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.3815 23
LOC classification:
  • TK7888.4
Online resources:
Contents:
Introduction -- Error-Recovery in Cyberphysical Biochips -- Real-Time Error Recovery Using a Compact Dictionary -- Biochemistry Synthesis under Completion-Time Uncertainties in Fluidic Operations -- Optimization of On-Chip Polymerase Chain Reaction -- Pin-Count Minimization for Application-Independent Chips -- Pro-Limited Cyberphysical Microfluidic Biochip -- Conclusions.
In: Springer eBooksSummary: This book describes a comprehensive framework for hardware/software co-design, optimization, and use of robust, low-cost, and cyberphysical digital microfluidic systems. Readers with a background in electronic design automation will find this book to be a valuable reference for leveraging conventional VLSI CAD techniques for emerging technologies, e.g., biochips or bioMEMS. Readers from the circuit/system design community will benefit from methods presented to extend design and testing techniques from microelectronics to mixed-technology microsystems. For readers from the microfluidics domain, this book presents a new design and development strategy for cyberphysical microfluidics-based biochips suitable for large-scale bioassay applications.    • Takes a transformative, “cyberphysical” approach towards achieving closed-loop and sensor feedback-driven biochip operation under program control; • Presents a “physically-aware” system reconfiguration technique that uses sensor data at intermediate checkpoints to dynamically reconfigure biochips; • Enables readers to simplify the structure of biochips, while facilitating the “general-purpose” use of digital microfluidic biochips for a wider range of applications.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Error-Recovery in Cyberphysical Biochips -- Real-Time Error Recovery Using a Compact Dictionary -- Biochemistry Synthesis under Completion-Time Uncertainties in Fluidic Operations -- Optimization of On-Chip Polymerase Chain Reaction -- Pin-Count Minimization for Application-Independent Chips -- Pro-Limited Cyberphysical Microfluidic Biochip -- Conclusions.

This book describes a comprehensive framework for hardware/software co-design, optimization, and use of robust, low-cost, and cyberphysical digital microfluidic systems. Readers with a background in electronic design automation will find this book to be a valuable reference for leveraging conventional VLSI CAD techniques for emerging technologies, e.g., biochips or bioMEMS. Readers from the circuit/system design community will benefit from methods presented to extend design and testing techniques from microelectronics to mixed-technology microsystems. For readers from the microfluidics domain, this book presents a new design and development strategy for cyberphysical microfluidics-based biochips suitable for large-scale bioassay applications.    • Takes a transformative, “cyberphysical” approach towards achieving closed-loop and sensor feedback-driven biochip operation under program control; • Presents a “physically-aware” system reconfiguration technique that uses sensor data at intermediate checkpoints to dynamically reconfigure biochips; • Enables readers to simplify the structure of biochips, while facilitating the “general-purpose” use of digital microfluidic biochips for a wider range of applications.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu