Amazon cover image
Image from Amazon.com

Feature Selection for Data and Pattern Recognition [electronic resource] / edited by Urszula Stańczyk, Lakhmi C. Jain.

Contributor(s): Series: Studies in Computational Intelligence ; 584Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015Description: XVIII, 355 p. 74 illus., 20 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783662456200
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 006.3 23
LOC classification:
  • Q342
Online resources:
Contents:
Feature Selection for Data and Pattern Recogniton: an Introduction -- Part I Estimation of Feature Importance -- Part II Rough Set Approach to Attribute Reduction -- Part III Rule Discovery and Evaluation -- Part IV Data- and Domain-oriented Methodologies.
In: Springer eBooksSummary: This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition. Even though it has been the subject of interest for some time, feature selection remains one of actively pursued avenues of investigations due to its importance and bearing upon other problems and tasks. This volume points to a number of advances topically subdivided into four parts: estimation of importance of characteristic features, their relevance, dependencies, weighting and ranking; rough set approach to attribute reduction with focus on relative reducts; construction of rules and their evaluation; and data- and domain-oriented methodologies.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Feature Selection for Data and Pattern Recogniton: an Introduction -- Part I Estimation of Feature Importance -- Part II Rough Set Approach to Attribute Reduction -- Part III Rule Discovery and Evaluation -- Part IV Data- and Domain-oriented Methodologies.

This research book provides the reader with a selection of high-quality texts dedicated to current progress, new developments and research trends in feature selection for data and pattern recognition. Even though it has been the subject of interest for some time, feature selection remains one of actively pursued avenues of investigations due to its importance and bearing upon other problems and tasks. This volume points to a number of advances topically subdivided into four parts: estimation of importance of characteristic features, their relevance, dependencies, weighting and ranking; rough set approach to attribute reduction with focus on relative reducts; construction of rules and their evaluation; and data- and domain-oriented methodologies.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu