Amazon cover image
Image from Amazon.com

The Concept of Stability in Numerical Mathematics [electronic resource] / by Wolfgang Hackbusch.

By: Contributor(s): Series: Springer Series in Computational Mathematics ; 45Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014Description: XV, 188 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642393860
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 518 23
LOC classification:
  • QA297-299.4
Online resources:
Contents:
Preface -- Introduction -- Stability of Finite Algorithms -- Quadrature -- Interpolation -- Ordinary Differential Equations -- Instationary Partial Difference Equations -- Stability for Discretisations of Elliptic Problems -- Stability for Discretisations of Integral Equations -- Index.
In: Springer eBooksSummary: In this book, the author compares the meaning of stability in different subfields of numerical mathematics.  Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.  .
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Preface -- Introduction -- Stability of Finite Algorithms -- Quadrature -- Interpolation -- Ordinary Differential Equations -- Instationary Partial Difference Equations -- Stability for Discretisations of Elliptic Problems -- Stability for Discretisations of Integral Equations -- Index.

In this book, the author compares the meaning of stability in different subfields of numerical mathematics.  Concept of Stability in numerical mathematics opens by examining the stability of finite algorithms. A more precise definition of stability holds for quadrature and interpolation methods, which the following chapters focus on. The discussion then progresses to the numerical treatment of ordinary differential equations (ODEs). While one-step methods for ODEs are always stable, this is not the case for hyperbolic or parabolic differential equations, which are investigated next. The final chapters discuss stability for discretisations of elliptic differential equations and integral equations. In comparison among the subfields we discuss the practical importance of stability and the possible conflict between higher consistency order and stability.  .

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu