Amazon cover image
Image from Amazon.com

Subspace Methods for Pattern Recognition in Intelligent Environment [electronic resource] / edited by Yen-Wei Chen, Lakhmi C. Jain.

Contributor(s): Series: Studies in Computational Intelligence ; 552Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014Description: XVI, 199 p. 99 illus., 52 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642548512
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 519 23
LOC classification:
  • TA329-348
  • TA640-643
Online resources:
Contents:
Active Shape Model and Its Application to Face Alignment -- Condition Relaxation in Conditional Statistical Shape Models --  Independent Component Analysis and Its Application to Classification of High-Resolution Remote Sensing Images -- Subspace Construction from Artificially Generated Images for Traffic Sign Recognition -- Local Structure Preserving based Subspace Analysis Methods and Applications -- Sparse Representation for Image Super-Resolution -- Sampling and Recovery of Continuously-Defined Sparse Signals and Its Applications -- Tensor-Based Subspace Learning for Multi-Pose Face Synthesis.
In: Springer eBooksSummary: This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Active Shape Model and Its Application to Face Alignment -- Condition Relaxation in Conditional Statistical Shape Models --  Independent Component Analysis and Its Application to Classification of High-Resolution Remote Sensing Images -- Subspace Construction from Artificially Generated Images for Traffic Sign Recognition -- Local Structure Preserving based Subspace Analysis Methods and Applications -- Sparse Representation for Image Super-Resolution -- Sampling and Recovery of Continuously-Defined Sparse Signals and Its Applications -- Tensor-Based Subspace Learning for Multi-Pose Face Synthesis.

This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu