Amazon cover image
Image from Amazon.com

Studies of Nanoconstrictions, Nanowires and Fe₃O₄ Thin Films [electronic resource] : Electrical Conduction and Magnetic Properties. Fabrication by Focused Electron/Ion Beam / by Amalio Fernandez-Pacheco.

By: Contributor(s): Series: Springer ThesesPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Description: XVI, 188 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642158018
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 620.115 23
LOC classification:
  • T174.7
  • TA418.9.N35
Online resources:
Contents:
Introduction -- Experimental Techniques -- Magnetotransport Properties of Epitaxial Fe3O4 thin Films -- Conduction in in Atomic-Sized Magnetic Metallic Constructions created by FIB -- Pt-C Nanowires created by FIBID and FEBID -- Superconductor W-Based Nanowires created by FIBID -- Magnetic Cobalt Nanowires created by FEBID -- Conclusions and Outlook -- CV.
In: Springer eBooksSummary: This work constitutes a detailed study of electrical and magnetic properties in nanometric materials with a range of scales: atomic-sized nanoconstrictions, micro- and nanowires and thin films. Firstly, a novel method of fabricating atomic-sized constrictions in metals is presented; it relies on measuring the conduction of the device while a focused-ion-beam etching process is in progress. Secondly, it describes wires created by a very promising nanolithography technique: Focused electron/ion-beam-induced deposition. Three different gas precursors were used: (CH₃)₃Pt(CpCH₃), W(CO)₆ and Co₂(CO)₈. The thesis reports the results obtained for various physical phenomena: the metal-insulator transition, superconducting and magnetic properties, respectively. Finally, the detailed magnetotransport properties in epitaxial Fe₃O₄ thin films grown on MgO (001) are presented. Overall, the new approaches developed in this thesis have great potential for supporting novel technologies.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Experimental Techniques -- Magnetotransport Properties of Epitaxial Fe3O4 thin Films -- Conduction in in Atomic-Sized Magnetic Metallic Constructions created by FIB -- Pt-C Nanowires created by FIBID and FEBID -- Superconductor W-Based Nanowires created by FIBID -- Magnetic Cobalt Nanowires created by FEBID -- Conclusions and Outlook -- CV.

This work constitutes a detailed study of electrical and magnetic properties in nanometric materials with a range of scales: atomic-sized nanoconstrictions, micro- and nanowires and thin films. Firstly, a novel method of fabricating atomic-sized constrictions in metals is presented; it relies on measuring the conduction of the device while a focused-ion-beam etching process is in progress. Secondly, it describes wires created by a very promising nanolithography technique: Focused electron/ion-beam-induced deposition. Three different gas precursors were used: (CH₃)₃Pt(CpCH₃), W(CO)₆ and Co₂(CO)₈. The thesis reports the results obtained for various physical phenomena: the metal-insulator transition, superconducting and magnetic properties, respectively. Finally, the detailed magnetotransport properties in epitaxial Fe₃O₄ thin films grown on MgO (001) are presented. Overall, the new approaches developed in this thesis have great potential for supporting novel technologies.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu