Amazon cover image
Image from Amazon.com

Laser Wakefield Electron Acceleration [electronic resource] : A Novel Approach Employing Supersonic Microjets and Few-Cycle Laser Pulses / by Karl Schmid.

By: Contributor(s): Series: Springer ThesesPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Description: XIV, 166 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642199509
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 530.44 23
LOC classification:
  • QC717.6-718.8
Online resources:
Contents:
Supersonic Micro-Jets.-Theory of Compressible Fluid Flow -- Numeric Flow Simulation -- Experimental Characterization of Gas Jets -- Few Cycle Laser-Driven Electron Acceleration -- Electron Acceleration by Few-Cycle Laser Pulses: Theory and Simulation -- Experimental Setup -- Experimental Results on Electron Acceleration -- Next Steps for Optimizing the Accelerator -- A. Numeric Setup of the Fluid Flow Simulations -- B. Nozzle Designs.
In: Springer eBooksSummary: This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four orders of magnitude larger than that attainable by conventional accelerators. This thesis demonstrates that laser pulses with an ultrashort duration of 8 fs and a peak power of 6 TW allow the production of electron energies up to 50 MeV via LWFA. The special properties of laser accelerated electron pulses, namely the ultrashort pulse duration, the high brilliance, and the high charge density, open up new possibilities in many applications of these electron beams.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Supersonic Micro-Jets.-Theory of Compressible Fluid Flow -- Numeric Flow Simulation -- Experimental Characterization of Gas Jets -- Few Cycle Laser-Driven Electron Acceleration -- Electron Acceleration by Few-Cycle Laser Pulses: Theory and Simulation -- Experimental Setup -- Experimental Results on Electron Acceleration -- Next Steps for Optimizing the Accelerator -- A. Numeric Setup of the Fluid Flow Simulations -- B. Nozzle Designs.

This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four orders of magnitude larger than that attainable by conventional accelerators. This thesis demonstrates that laser pulses with an ultrashort duration of 8 fs and a peak power of 6 TW allow the production of electron energies up to 50 MeV via LWFA. The special properties of laser accelerated electron pulses, namely the ultrashort pulse duration, the high brilliance, and the high charge density, open up new possibilities in many applications of these electron beams.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu