Normal view MARC view ISBD view

Experimental mechanics of solids and structures / Jérôme Molimard.

By: Molimard, Jérôme [author.].
Series: Focus series in mechanical engineering and solid mechanics: Publisher: London : Hoboken, NJ : ISTE Ltd ; John Wiley & Sons Inc, ©2016Description: 139 pages ; illustrations ; 24 cm.Content type: text Media type: unmediated Carrier type: volumeISBN: 9781848219960.Subject(s): Mechanics, Applied -- Experiments | Mechanics, Applied -- Mathematics | Structural analysis (Engineering) | Materials -- Testing | Mechanics, Applied -- Mathematics | Materials -- Testing | Mechanics, Applied | Structural analysis (Engineering)Genre/Form: Print books.
Contents:
Mechanical Tests -- Introduction -- Measurable quantities -- Tensile test -- Optimal testing conditions -- Result of a standard tensile test -- Stiffness of a tensile testing machine -- Bending test -- Test principle -- Optimal realization conditions -- Determination of flexural modulus -- Damage to the structure -- A Few Sensors Used in Mechanics -- Introduction -- Strain measurement -- Principle -- Gauge factor -- Description of a gauge -- Conditioning -- Multi-gauge assemblies -- Compensation of bending effects -- Effect of temperature -- Measurement of a surface-strain tensor of an object -- "Measurement" considerations -- Displacement measurement -- Principle -- Key characteristics -- Force measurement -- Strain gauge load cell -- Piezoelectric gauge load cell -- Acceleration measurement -- Principle -- Selection criteria -- Optical Full-Field Methods -- Overview -- Selection of a field optical method -- Factors governing selection -- Fringe projection -- Grid method -- Digital image correlation -- Speckle interferometry (ESPI) -- Main processing methods of photomechanical results -- Metrological aspects -- Correction of target distorsions -- Denoising in mapping -- Phase unwrapping -- Derivation of a displacement map -- Basic Tools for Measurement Methods -- Introduction -- Measurement and precision -- Calibration -- Tests -- Evaluating uncertainties -- Experimental test plans -- Preparation -- Approach -- Adjusting polynomial models by least squares -- Linear factorial design without interaction -- Linear factorial design with interactions -- Quadratic design with interactions -- Variance analysis -- Hypothesis tests -- General principle -- 1st and 2nd order error: a test's power -- Choosing a statistical law -- Examples -- Test for model adjustment: a return to ANOVA analysis -- Exercises -- Multiple-choice questions -- Problem: designing a torque meter -- Mechanical analysis -- Electrical installation -- Analyzing uncertainty -- Problem: traction test on a composite -- Sizing a traction test -- Measuring -- Photomechanics -- Problem: optic fiber Bragg gratings -- What happens when there is traction on the fiber? -- What will the effective index become depending on the temperature and strain parameters? -- Separating temperature and mechanics -- Analyzing uncertainty -- Problem: bending a MEMS micro-sensor -- Suggesting a mechanical model for this problem -- Problem: studying a 4-point bending system -- Analyzing the device -- Mechanical analysis -- Analyzing uncertainties -- Optical full field methods -- Digital pressure tester: statistical tests -- Discovering the statistical functions library -- Estimating a confidence interval -- Calculating a test's power.
    average rating: 0.0 (0 votes)
Current location Call number Status Date due Barcode Item holds
On Shelf TA407.4 .M65 2016 (Browse shelf) Available AU00000000014391
Total holds: 0

Includes bibliographical references (pages 133-139) and index.

Machine generated contents note: ch. 1 Mechanical Tests -- 1.1. Introduction -- 1.2. Measurable quantities -- 1.3. Tensile test -- 1.3.1. Optimal testing conditions -- 1.3.2. Result of a standard tensile test -- 1.3.3. Stiffness of a tensile testing machine -- 1.4. Bending test -- 1.4.1. Test principle -- 1.4.2. Optimal realization conditions -- 1.4.3. Determination of flexural modulus -- 1.4.4. Damage to the structure -- ch. 2 A Few Sensors Used in Mechanics -- 2.1. Introduction -- 2.2. Strain measurement -- 2.2.1. Principle -- 2.2.2. Gauge factor -- 2.2.3. Description of a gauge -- 2.2.4. Conditioning -- 2.2.5. Multi-gauge assemblies -- 2.2.6. Compensation of bending effects -- 2.2.7. Effect of temperature -- 2.2.8. Measurement of a surface-strain tensor of an object -- 2.2.9. "Measurement" considerations -- 2.3. Displacement measurement -- 2.3.1. Principle -- 2.3.2. Key characteristics -- 2.4. Force measurement -- 2.4.1. Strain gauge load cell -- 2.4.2. Piezoelectric gauge load cell -- 2.5. Acceleration measurement -- 2.5.1. Principle -- 2.5.2. Selection criteria -- ch. 3 Optical Full-Field Methods -- 3.1. Overview -- 3.2. Selection of a field optical method -- 3.2.1. Factors governing selection -- 3.2.2. Fringe projection -- 3.2.3. Grid method -- 3.2.4. Digital image correlation -- 3.2.5. Speckle interferometry (ESPI) -- 3.3. Main processing methods of photomechanical results -- 3.3.1. Metrological aspects -- 3.3.2. Correction of target distorsions -- 3.3.3. Denoising in mapping -- 3.3.4. Phase unwrapping -- 3.3.5. Derivation of a displacement map -- ch. 4 Basic Tools for Measurement Methods -- 4.1. Introduction -- 4.2. Measurement and precision -- 4.2.1. Calibration -- 4.2.2. Tests -- 4.2.3. Evaluating uncertainties -- 4.3. Experimental test plans -- 4.3.1. Preparation -- 4.3.2. Approach -- 4.3.3. Adjusting polynomial models by least squares -- 4.3.4. Linear factorial design without interaction -- 4.3.5. Linear factorial design with interactions -- 4.3.6. Quadratic design with interactions -- 4.3.7. Variance analysis -- 4.4. Hypothesis tests -- 4.4.1. General principle -- 4.4.2. 1st and 2nd order error: a test's power -- 4.4.3. Choosing a statistical law -- 4.4.4. Examples -- 4.4.5. Test for model adjustment: a return to ANOVA analysis -- ch. 5 Exercises -- 5.1. Multiple-choice questions -- 5.2. Problem: designing a torque meter -- 5.2.1. Mechanical analysis -- 5.2.2. Electrical installation -- 5.2.3. Analyzing uncertainty -- 5.3. Problem: traction test on a composite -- 5.3.1. Sizing a traction test -- 5.3.2. Measuring -- 5.3.3. Photomechanics -- 5.4. Problem: optic fiber Bragg gratings -- 5.4.1. What happens when there is traction on the fiber? -- 5.4.2. What will the effective index become depending on the temperature and strain parameters? -- 5.4.3. Separating temperature and mechanics -- 5.4.4. Analyzing uncertainty -- 5.5. Problem: bending a MEMS micro-sensor -- 5.5.1. Suggesting a mechanical model for this problem -- 5.6. Problem: studying a 4-point bending system -- 5.6.1. Analyzing the device -- 5.6.2. Mechanical analysis -- 5.6.3. Analyzing uncertainties -- 5.6.4. Optical full field methods -- 5.7. Digital pressure tester: statistical tests -- 5.7.1. Discovering the statistical functions library -- 5.7.2. Estimating a confidence interval -- 5.7.3. Calculating a test's power.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu