Shadbolt, Peter.

Complexity and Control in Quantum Photonics [electronic resource] / by Peter Shadbolt. - 1st ed. 2016. - XVIII, 208 p. 55 illus., 2 illus. in color. online resource. - Springer Theses, Recognizing Outstanding Ph.D. Research, 2190-5053 . - Springer Theses, Recognizing Outstanding Ph.D. Research, .

Introduction and Essential Physics -- A Reconfigurable Two-qubit chip -- A Quantum Delayed-Choice Experiment -- Entanglement and Non locality without a Shared Frame -- Quantum Chemistry on a Photonic Chip -- Increased complexity -- Discussion.

This work explores the scope and flexibility afforded by integrated quantum photonics, both in terms of practical problem-solving, and for the pursuit of fundamental science. The author demonstrates and fully characterizes a two-qubit quantum photonic chip, capable of arbitrary two-qubit state preparation. Making use of the unprecedented degree of reconfigurability afforded by this device, a novel variation on Wheeler’s delayed choice experiment is implemented, and a new technique to obtain nonlocal statistics without a shared reference frame is tested. Also presented is a new algorithm for quantum chemistry, simulating the helium hydride ion. Finally, multiphoton quantum interference in a large Hilbert space is demonstrated, and its implications for computational complexity are examined.

9783319215181

10.1007/978-3-319-21518-1 doi


Physics.
Chemistry, Physical and theoretical.
Quantum computers.
Quantum physics.
Quantum optics.
Spintronics.
Physics.
Quantum Optics.
Quantum Information Technology, Spintronics.
Theoretical and Computational Chemistry.
Quantum Computing.
Quantum Physics.


Electronic books.

QC173.96-174.52

535.15