TY - BOOK AU - Luyben,William L. ED - Wiley eBooks. TI - Distillation design and control using Aspen simulation SN - 9781118510193 AV - TP159.D5 PY - 2013/// CY - Hoboken, N.J. PB - Wiley KW - Distillation apparatus KW - Design and construction KW - Chemical process control KW - Simulation methods KW - Petroleum KW - Refining KW - SCIENCE KW - Chemistry KW - Industrial & Technical KW - bisacsh KW - TECHNOLOGY & ENGINEERING KW - Chemical & Biochemical KW - Electronic books KW - local N1 - "AIChE."; Includes bibliographical references and index; 1. Fundamentals of Vapor -- Liquid -- Equilibrium (VLE) -- 1.1. Vapor Pressure -- 1.2. Binary VLE Phase Diagrams -- 1.3. Physical Property Methods -- 1.4. Relative Volatility -- 1.5. Bubble Point Calculations -- 1.6. Ternary Diagrams -- 1.7. VLE Nonideality -- 1.8. Residue Curves for Ternary Systems -- 1.9. Distillation Boundaries -- 1.10. Conclusions -- Reference -- 2. Analysis of Distillation Columns -- 2.1. Design Degrees of Freedom -- 2.2. Binary McCabe -- Thiele Method -- 2.2.1. Operating Lines -- 2.2.2.q-Line -- 2.2.3. Stepping Off Trays -- 2.2.4. Effect of Parameters -- 2.2.5. Limiting Conditions -- 2.3. Approximate Multicomponent Methods -- 2.3.1. Fenske Equation for Minimum Number of Trays -- 2.3.2. Underwood Equations for Minimum Reflux Ratio -- 2.4. Conclusions -- 3. Setting Up a Steady-State Simulation -- 3.1. Configuring a New Simulation -- 3.2. Specifying Chemical Components and Physical Properties -- 3.3. Specifying Stream Properties; 3.4. Specifying Parameters of Equipment -- 3.4.1. Column C1 -- 3.4.2. Valves and Pumps -- 3.5. Running the Simulation -- 3.6. Using Design Spec/Vary Function -- 3.7. Finding the Optimum Feed Tray and Minimum Conditions -- 3.7.1. Optimum Feed Tray -- 3.7.2. Minimum Reflux Ratio -- 3.7.3. Minimum Number of Trays -- 3.8. Column Sizing -- 3.8.1. Length -- 3.8.2. Diameter -- 3.9. Conceptual Design -- 3.10. Conclusions -- 4. Distillation Economic Optimization -- 4.1. Heuristic Optimization -- 4.1.1. Set Total Trays to Twice Minimum Number of Trays -- 4.1.2. Set Reflux Ratio to 1.2 Times Minimum Reflux Ratio -- 4.2. Economic Basis -- 4.3. Results -- 4.4. Operating Optimization -- 4.5. Optimum Pressure for Vacuum Columns -- 4.6. Conclusions -- 5. More Complex Distillation Systems -- 5.1. Extractive Distillation -- 5.1.1. Design -- 5.1.2. Simulation Issues -- 5.2. Ethanol Dehydration -- 5.2.1. VLLE Behavior -- 5.2.2. Process Flowsheet Simulation -- 5.2.3. Converging the Flowsheet; 5.3. Pressure-Swing Azeotropic Distillation -- 5.4. Heat-Integrated Columns -- 5.4.1. Flowsheet -- 5.4.2. Converging for Neat Operation -- 5.5. Conclusions -- 6. Steady-State Calculations for Control Structure Selection -- 6.1. Control Structure Alternatives -- 6.1.1. Dual-Composition Control -- 6.1.2. Single-End Control -- 6.2. Feed Composition Sensitivity Analysis (ZSA) -- 6.3. Temperature Control Tray Selection -- 6.3.1. Summary of Methods -- 6.3.2. Binary Propane/Isobutane System -- 6.3.3. Ternary BTX System -- 6.3.4. Ternary Azeotropic System -- 6.4. Conclusions -- Reference -- 7. Converting from Steady-State to Dynamic Simulation -- 7.1. Equipment Sizing -- 7.2. Exporting to Aspen Dynamics -- 7.3. Opening the Dynamic Simulation in Aspen Dynamics -- 7.4. Installing Basic Controllers -- 7.4.1. Reflux -- 7.4.2. Issues -- 7.5. Installing Temperature and Composition Controllers -- 7.5.1. Tray Temperature Control -- 7.5.2.Composition Control; 7.5.3.Composition/Temperature Cascade Control -- 7.6. Performance Evaluation -- 7.6.1. Installing a Plot -- 7.6.2. Importing Dynamic Results into Matlab -- 7.6.3. Reboiler Heat Input to Feed Ratio -- 7.6.4.Comparison of Temperature Control with Cascade CC/TC -- 7.7. Conclusions -- 8. Control of More Complex Columns -- 8.1. Extractive Distillation Process -- 8.1.1. Design -- 8.1.2. Control Structure -- 8.1.3. Dynamic Performance -- 8.2. Columns with Partial Condensers -- 8.2.1. Total Vapor Distillate -- 8.2.2. Both Vapor and Liquid Distillate Streams -- 8.3. Control of Heat-Integrated Distillation Columns -- 8.3.1. Process Studied -- 8.3.2. Heat Integration Relationships -- 8.3.3. Control Structure -- 8.3.4. Dynamic Performance -- 8.4. Control of Azeotropic Columns/Decanter System -- 8.4.1. Converting to Dynamics and Closing Recycle Loop -- 8.4.2. Installing the Control Structure -- 8.4.3. Performance -- 8.4.4. Numerical Integration Issues -- 8.5. Unusual Control Structure; 8.5.1. Process Studied -- 8.5.2. Economic Optimum Steady-State Design -- 8.5.3. Control Structure Selection -- 8.5.4. Dynamic Simulation Results -- 8.5.5. Alternative Control Structures -- 8.5.6. Conclusions -- 8.6. Conclusions -- References -- 9. Reactive Distillation -- 9.1. Introduction -- 9.2. Types of Reactive Distillation Systems -- 9.2.1. Single-Feed Reactions -- 9.2.2. Irreversible Reaction with Heavy Product -- 9.2.3. Neat Operation Versus Use of Excess Reactant -- 9.3. TAME Process Basics -- 9.3.1. Prereactor -- 9.3.2. Reactive Column C1 -- 9.4. TAME Reaction Kinetics and VLE -- 9.5. Plantwide Control Structure -- 9.6. Conclusions -- References -- 10. Control of Sidestream Columns -- 10.1. Liquid Sidestream Column -- 10.1.1. Steady-State Design -- 10.1.2. Dynamic Control -- 10.2. Vapor Sidestream Column -- 10.2.1. Steady-State Design -- 10.2.2. Dynamic Control -- 10.3. Liquid Sidestream Column with Stripper -- 10.3.1. Steady-State Design -- 10.3.2. Dynamic Control; 10.4. Vapor Sidestream Column with Rectifier -- 10.4.1. Steady-State Design -- 10.4.2. Dynamic Control -- 10.5. Sidestream Purge Column -- 10.5.1. Steady-State Design -- 10.5.2. Dynamic Control -- 10.6. Conclusions -- 11. Control of Petroleum Fractionators -- 11.1. Petroleum Fractions -- 11.2. Characterization Crude Oil -- 11.3. Steady-State Design of Preflash Column -- 11.4. Control of Preflash Column -- 11.5. Steady-State Design of Pipestill -- 11.5.1. Overview of Steady-State Design -- 11.5.2. Configuring the Pipestill in Aspen Plus -- 11.5.3. Effects of Design Parameters -- 11.6. Control of Pipestill -- 11.7. Conclusions -- References -- 12. Divided-Wall (Petlyuk) Columns -- 12.1. Introduction -- 12.2. Steady-State Design -- 12.2.1. MultiFrac Model -- 12.2.2. RadFrac Model -- 12.3. Control of the Divided-Wall Column -- 12.3.1. Control Structure -- 12.3.2. Implementation in Aspen Dynamics -- 12.3.3. Dynamic Results -- 12.4. Control of the Conventional Column Process; 12.4.1. Control Structure -- 12.4.2. Dynamic Results and Comparisons -- 12.5. Conclusions and Discussion -- References -- 13. Dynamic Safety Analysis -- 13.1. Introduction -- 13.2. Safety Scenarios -- 13.3. Process Studied -- 13.4. Basic RadFrac Models -- 13.4.1. Constant Duty Model -- 13.4.2. Constant Temperature Model -- 13.4.3. LMTD Model -- 13.4.4. Condensing or Evaporating Medium Models -- 13.4.5. Dynamic Model for Reboiler -- 13.5. RadFrac Model with Explicit Heat-Exchanger Dynamics -- 13.5.1. Column -- 13.5.2. Condenser -- 13.5.3. Reflux Drum -- 13.5.4. Liquid Split -- 13.5.5. Reboiler -- 13.6. Dynamic Simulations -- 13.6.1. Base Case Control Structure -- 13.6.2. Rigorous Case Control Structure -- 13.7.Comparison of Dynamic Responses -- 13.7.1. Condenser Cooling Failure -- 13.7.2. Heat-Input Surge -- 13.8. Other Issues -- 13.9. Conclusions -- Reference -- 14. Carbon Dioxide Capture -- 14.1. Carbon Dioxide Removal in Low-Pressure Air Combustion Power Plants; 14.1.1. Process Design -- 14.1.2. Simulation Issues -- 14.1.3. Plantwide Control Structure -- 14.1.4. Dynamic Performance -- 14.2. Carbon Dioxide Removal in High-Pressure IGCC Power Plants -- 14.2.1. Design -- 14.2.2. Plantwide Control Structure -- 14.2.3. Dynamic Performance -- 14.3. Conclusions -- References -- 15. Distillation Turndown -- 15.1. Introduction -- 15.2. Control Problem -- 15.2.1. Two-Temperature Control -- 15.2.2. Valve-Position Control -- 15.2.3. Recycle Control -- 15.3. Process Studied -- 15.4. Dynamic Performance for Ramp Disturbances -- 15.4.1. Two-Temperature Control -- 15.4.2. VPC Control -- 15.4.3. Recycle Control -- 15.4.4.Comparison -- 15.5. Dynamic Performance for Step Disturbances -- 15.5.1. Two-Temperature Control -- 15.5.2. VPC Control -- 15.5.3. Recycle Control -- 15.6. Other Control Structures -- 15.6.1. No Temperature Control -- 15.6.2. Dual Temperature Control -- 15.7. Conclusions -- References; 16. Pressure-Compensated Temperature Control in Distillation Columns -- 16.1. Introduction -- 16.2. Numerical Example Studied -- 16.3. Conventional Control Structure Selection -- 16.4. Temperature/Pressure/Composition Relationships -- 16.5. Implementation in Aspen Dynamics -- 16.6.Comparison of Dynamic Results -- 16.6.1. Feed Flow Rate Disturbances -- 16.6.2. Pressure Disturbances -- 16.7. Conclusions -- References -- 17. Ethanol Dehydration -- 17.1. Introduction -- 17.2. Optimization of the Beer Still (Preconcentrator) -- 17.3. Optimization of the Azeotropic and Recovery Columns -- 17.3.1. Optimum Feed Locations -- 17.3.2. Optimum Number of Stages -- 17.4. Optimization of the Entire Process -- 17.5. Cyclohexane Entrainer -- 17.6. Flowsheet Recycle Convergence -- 17.7. Conclusions -- References -- 18. External Reset Feedback to Prevent Reset Windup -- 18.1. Introduction -- 18.2. External Reset Feedback Circuit Implementation -- 18.2.1. Generate the Error Signal; 18.2.2. Multiply by Controller Gain -- 18.2.3. Add the Output of Lag -- 18.2.4. Select Lower Signal -- 18.2.5. Setting up the Lag Block -- 18.3. Flash Tank Example -- 18.3.1. Process and Normal Control Structure -- 18.3.2. Override Control Structure Without External Reset Feedback -- 18.3.3. Override Control Structure with External Reset Feedback -- 18.4. Distillation Column Example -- 18.4.1. Normal Control Structure -- 18.4.2. Normal and Override Controllers Without External Reset -- 18.4.3. Normal and Override Controllers with External Reset Feedback -- 18.5. Conclusions -- References UR - http://ezproxy.alfaisal.edu/login?url=http://dx.doi.org/10.1002/9781118510193 ER -