TY - BOOK AU - Sonnenschein,Mark F. ED - Wiley eBooks. TI - Polyurethanes: Science, Technology, Markets, and Trends T2 - Wiley Series on Polymer Engineering and Technology SN - 9781118901274 AV - TP1180.P8 PY - 2014/// CY - Hoboken PB - Wiley KW - Polyurethanes KW - fast KW - Electronic books KW - local N1 - Chapter 10 Polyurethane Adhesives and Coatings: Manufacture, Applications, Markets, and Trends; ReferencesChapter 5 Analytical Characterization of Polyurethanes; 5.1 Analysis of Reagents for Making Polyurethanes; 5.1.1 Analysis of Polyols; 5.1.2 Analysis of Isocyanates; 5.2 Instrumental Analysis of Polyurethanes; 5.2.1 Microscopy; 5.2.2 IR Spectrometry; 5.2.3 X-Ray Analyses; 5.3 Mechanical Analysis; 5.3.1 Tensile, Tear, and Elongation Testing; 5.3.2 DMA; 5.4 Nuclear Magnetic Spectroscopy; References; Chapter 6 Polyurethane Flexible Foams: Chemistry and Fabrication; 6.1 Making Polyurethane Foams; 6.1.1 Slabstock Foams; 6.1.2 Molded Foams; 6.2 Foam Processes; Polyurethanes: Science, Technology, Markets, and Trends; Copyright; Contents; Acknowledgments; Chapter 1 Introduction; References; Chapter 2 Polyurethane Building Blocks; 2.1 Polyols; 2.1.1 Polyether Polyols; 2.1.2 Polyester Polyols; 2.1.3 Other Polyols; 2.1.4 Filled Polyols; 2.1.5 Seed Oil-Derived Polyols; 2.1.6 Prepolymers; 2.2 Isocyanates; 2.2.1 TDI; 2.2.2 Diphenylmethane Diisocyanates (MDI); 2.2.3 Aliphatic Isocyanates; 2.3 Chain Extenders; References; Chapter 3 Introduction to Polyurethane Chemistry; 3.1 Introduction; 3.2 Mechanism and Catalysis of Urethane Formation; 3.3 Reactions of Isocyanates with Active Hydrogen Compounds3.3.1 Urea Formation; 3.3.2 Allophanate Formation; 3.3.3 Formation of Biurets; 3.3.4 Formation of Uretidione (isocyanate dimer); 3.3.5 Formation of Carbodiimide; 3.3.6 Formation of Uretonimine; 3.3.7 Formation of Amides; References; Chapter 4 Theoretical Concepts and Techniques in Polyurethane Science; 4.1 Formation of Polyurethane Structure; 4.2 Properties of Polyurethanes; 4.2.1 Models and Calculations for Polymer Modulus; 4.2.2 Models for Elastomer Stress Strain Properties; 4.2.3 The Polyurethane Glass Transition Temperature; 6.2.1 Surfactancy and Catalysis6.3 Flexible Foam Formulation and Structure-Property Relationships; 6.3.1 Screening Tests; 6.3.2 Foam Formulation and Structure-Property Relationships; References; Chapter 7 Polyurethane Flexible Foams: Manufacture, Applications, Markets, and Trends; 7.1 Applications; 7.1.1 Furniture; 7.1.2 Mattresses and bedding; 7.1.3 Transportation; 7.1.4 The Molded Foam Market; 7.2 Trends in Molded Foam Technology and Markets; References; Chapter 8 Polyurethane Rigid Foams: Manufacture, Applications, Markets, and Trends; 8.1 Regional Market Dynamics; 8.2 Applications; 8.2.1 Construction Foams8.2.2 Rigid Construction Foam Market Segments; 8.2.3 Appliance Foams; 8.3 Blowing Agents and Insulation Fundamentals; 8.3.1 Blowing Agents; 8.3.2 Blowing Agent Phase-Out Schedule; 8.4 Insulation Fundamentals; 8.5 Trends in Rigid Foams Technology; References; Chapter 9 Polyurethane Elastomers: Manufacture, Applications, Markets, and Trends; 9.1 Regional Market Dynamics; 9.2 Applications; 9.2.1 Footwear; 9.2.2 Nonfootwear Elastomer Applications and Methods of Manufacture; 9.3 Trends in PU Elastomers; References N2 - A complete overview of a key plastic One of the most versatile polymer materials, polyurethanes have a unique chemical nature that allows for shaping and molding to fit all sorts of consumer and industrial products - seat cushions, carpets, insulation, coatings, and refrigerators to name a few. Despite its popular uses, polyurethane science has only relatively recently achieved appreciation for the richness of its expression as a polymer family. This book provides a thorough presentation of polyurethane science, technology markets and trend analysis based on recent patents. Although it does UR - http://ezproxy.alfaisal.edu/login?url=http://dx.doi.org/10.1002/9781118901274 ER -