Amazon cover image
Image from Amazon.com

Information Geometry [electronic resource] : Near Randomness and Near Independence / by Khadiga A. Arwini, Christopher T. J. Dodson.

By: Contributor(s): Series: Lecture Notes in Mathematics ; 1953Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008Description: X, 260 p. 103 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540693932
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 516.36 23
LOC classification:
  • QA641-670
Online resources:
Contents:
Mathematical Statistics and Information Theory -- to Riemannian Geometry -- Information Geometry -- Information Geometry of Bivariate Families -- Neighbourhoods of Poisson Randomness, Independence, and Uniformity -- Cosmological Voids and Galactic Clustering -- Amino Acid Clustering -- Cryptographic Attacks and Signal Clustering -- Stochastic Fibre Networks -- Stochastic Porous Media and Hydrology -- Quantum Chaology.
In: Springer eBooksSummary: This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Mathematical Statistics and Information Theory -- to Riemannian Geometry -- Information Geometry -- Information Geometry of Bivariate Families -- Neighbourhoods of Poisson Randomness, Independence, and Uniformity -- Cosmological Voids and Galactic Clustering -- Amino Acid Clustering -- Cryptographic Attacks and Signal Clustering -- Stochastic Fibre Networks -- Stochastic Porous Media and Hydrology -- Quantum Chaology.

This volume will be useful to practising scientists and students working in the application of statistical models to real materials or to processes with perturbations of a Poisson process, a uniform process, or a state of independence for a bivariate process. We use information geometry to provide a common differential geometric framework for a wide range of illustrative applications including amino acid sequence spacings in protein chains, cryptology studies, clustering of communications and galaxies, cosmological voids, coupled spatial statistics in stochastic fibre networks and stochastic porous media, quantum chaology. Introduction sections are provided to mathematical statistics, differential geometry and the information geometry of spaces of probability density functions.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu