Amazon cover image
Image from Amazon.com

Automatic Autocorrelation and Spectral Analysis [electronic resource] / by Piet M. T. Broersen.

By: Contributor(s): Publisher: London : Springer London, 2006Description: XII, 298 p. 104 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781846283291
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 620 23
LOC classification:
  • TA1-2040
Online resources:
Contents:
Basic Concepts -- Periodogram and Lagged Product Autocorrelation -- ARMA Theory -- Relations for Time Series Models -- Estimation of Time Series Models -- AR Order Selection -- MA and ARMA Order Selection -- ARMASA Toolbox with Applications -- Advanced Topics in Time Series Estimation.
In: Springer eBooksSummary: Automatic Autocorrelation and Spectral Analysis gives random data a language to communicate the information they contain objectively. In the current practice of spectral analysis, subjective decisions have to be made all of which influence the final spectral estimate and mean that different analysts obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that solution is only acceptable if it is close to the best attainable accuracy for most types of stationary data. Automatic Autocorrelation and Spectral Analysis describes a method which fulfils the above near-optimal-solution criterion. It takes advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data. Improved order selection quality guarantees that one of the best (and often the best) will be selected automatically. The data themselves suggest their best representation. Should the analyst wish to intervene, alternatives can be provided. Written for graduate signal processing students and for researchers and engineers using time series analysis for practical applications ranging from breakdown prevention in heavy machinery to measuring lung noise for medical diagnosis, this text offers: • tuition in how power spectral density and the autocorrelation function of stochastic data can be estimated and interpreted in time series models; • extensive support for the MATLAB® ARMAsel toolbox; • applications showing the methods in action; • appropriate mathematics for students to apply the methods with references for those who wish to develop them further.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Basic Concepts -- Periodogram and Lagged Product Autocorrelation -- ARMA Theory -- Relations for Time Series Models -- Estimation of Time Series Models -- AR Order Selection -- MA and ARMA Order Selection -- ARMASA Toolbox with Applications -- Advanced Topics in Time Series Estimation.

Automatic Autocorrelation and Spectral Analysis gives random data a language to communicate the information they contain objectively. In the current practice of spectral analysis, subjective decisions have to be made all of which influence the final spectral estimate and mean that different analysts obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that solution is only acceptable if it is close to the best attainable accuracy for most types of stationary data. Automatic Autocorrelation and Spectral Analysis describes a method which fulfils the above near-optimal-solution criterion. It takes advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data. Improved order selection quality guarantees that one of the best (and often the best) will be selected automatically. The data themselves suggest their best representation. Should the analyst wish to intervene, alternatives can be provided. Written for graduate signal processing students and for researchers and engineers using time series analysis for practical applications ranging from breakdown prevention in heavy machinery to measuring lung noise for medical diagnosis, this text offers: • tuition in how power spectral density and the autocorrelation function of stochastic data can be estimated and interpreted in time series models; • extensive support for the MATLAB® ARMAsel toolbox; • applications showing the methods in action; • appropriate mathematics for students to apply the methods with references for those who wish to develop them further.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu