Amazon cover image
Image from Amazon.com

Process Mining Techniques in Business Environments [electronic resource] : Theoretical Aspects, Algorithms, Techniques and Open Challenges in Process Mining / by Andrea Burattin.

By: Contributor(s): Series: Lecture Notes in Business Information Processing ; 207Publisher: Cham : Springer International Publishing : Imprint: Springer, 2015Description: XII, 220 p. 101 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319174822
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 006.312 23
LOC classification:
  • QA76.9.D343
Online resources:
Contents:
1 Introduction -- Part I: State of the Art: BPM, Data Mining and Process Mining -- 2 Introduction to Business Processes, BPM, and BPM Systems -- 3 Data Generated by Information Systems (and How to Get It) -- 4 Data Mining for Information System Data -- 5 Process Mining -- 6 Quality Criteria in Process Mining -- 7 Event Streams -- Part II: Obstacles to Process Mining in Practice -- 8 Obstacles to Applying Process Mining in Practice -- 9 Long-term View Scenario -- Part III: Process Mining as an Emerging Technology -- 10 Data Preparation -- 11 Heuristics Miner for Time Interval -- 12 Automatic Configuration of Mining Algorithm -- 13 User-Guided Discovery of Process Models -- 14 Extensions of Business Processes with Organizational Roles -- 15 Results Interpretation and Evaluation -- 16 Hands-On: Obtaining Test Data -- Part IV: A New Challenge in Process Mining -- 17 Process Mining for Stream Data Sources -- Part V: Conclusions and Future Work -- 18 Conclusions and Future Work.
In: Springer eBooksSummary: After a brief presentation of the state of the art of process-mining techniques, Andrea Burratin proposes different scenarios for the deployment of process-mining projects, and in particular a characterization of companies in terms of their process awareness. The approaches proposed in this book belong to two different computational paradigms: first to classic "batch process mining," and second to more recent "online process mining." The book encompasses a revised version of the author's PhD thesis, which won the "Best Process Mining Dissertation Award" in 2014, awarded by the IEEE Task Force on Process Mining.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1 Introduction -- Part I: State of the Art: BPM, Data Mining and Process Mining -- 2 Introduction to Business Processes, BPM, and BPM Systems -- 3 Data Generated by Information Systems (and How to Get It) -- 4 Data Mining for Information System Data -- 5 Process Mining -- 6 Quality Criteria in Process Mining -- 7 Event Streams -- Part II: Obstacles to Process Mining in Practice -- 8 Obstacles to Applying Process Mining in Practice -- 9 Long-term View Scenario -- Part III: Process Mining as an Emerging Technology -- 10 Data Preparation -- 11 Heuristics Miner for Time Interval -- 12 Automatic Configuration of Mining Algorithm -- 13 User-Guided Discovery of Process Models -- 14 Extensions of Business Processes with Organizational Roles -- 15 Results Interpretation and Evaluation -- 16 Hands-On: Obtaining Test Data -- Part IV: A New Challenge in Process Mining -- 17 Process Mining for Stream Data Sources -- Part V: Conclusions and Future Work -- 18 Conclusions and Future Work.

After a brief presentation of the state of the art of process-mining techniques, Andrea Burratin proposes different scenarios for the deployment of process-mining projects, and in particular a characterization of companies in terms of their process awareness. The approaches proposed in this book belong to two different computational paradigms: first to classic "batch process mining," and second to more recent "online process mining." The book encompasses a revised version of the author's PhD thesis, which won the "Best Process Mining Dissertation Award" in 2014, awarded by the IEEE Task Force on Process Mining.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu