Amazon cover image
Image from Amazon.com

Stochastic Control of Hereditary Systems and Applications [electronic resource] / edited by Mou-Hsiung Chang.

Contributor(s): Series: Stochastic Modelling and Applied Probability ; 59Publisher: New York, NY : Springer New York, 2008Description: XVIII, 406 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780387758169
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 519.2 23
LOC classification:
  • QA273.A1-274.9
  • QA274-274.9
Online resources:
Contents:
and Summary -- Stochastic Hereditary Differential Equations -- Stochastic Calculus -- Optimal Classical Control -- Optimal Stopping -- Discrete Approximations -- Option Pricing -- Hereditary Portfolio Optimization.
In: Springer eBooksSummary: This research monograph develops the Hamilton-Jacobi-Bellman (HJB) theory through dynamic programming principle for a class of optimal control problems for stochastic hereditary differential systems. It is driven by a standard Brownian motion and with a bounded memory or an infinite but fading memory. The optimal control problems treated in this book include optimal classical control and optimal stopping with a bounded memory and over finite time horizon. This book can be used as an introduction for researchers and graduate students who have a special interest in learning and entering the research areas in stochastic control theory with memories. Each chapter contains a summary. Mou-Hsiung Chang is a program manager at the Division of Mathematical Sciences for the U.S. Army Research Office.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

and Summary -- Stochastic Hereditary Differential Equations -- Stochastic Calculus -- Optimal Classical Control -- Optimal Stopping -- Discrete Approximations -- Option Pricing -- Hereditary Portfolio Optimization.

This research monograph develops the Hamilton-Jacobi-Bellman (HJB) theory through dynamic programming principle for a class of optimal control problems for stochastic hereditary differential systems. It is driven by a standard Brownian motion and with a bounded memory or an infinite but fading memory. The optimal control problems treated in this book include optimal classical control and optimal stopping with a bounded memory and over finite time horizon. This book can be used as an introduction for researchers and graduate students who have a special interest in learning and entering the research areas in stochastic control theory with memories. Each chapter contains a summary. Mou-Hsiung Chang is a program manager at the Division of Mathematical Sciences for the U.S. Army Research Office.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu