Amazon cover image
Image from Amazon.com

An Introduction to Random Interlacements [electronic resource] / by Alexander Drewitz, Balázs Ráth, Artëm Sapozhnikov.

By: Contributor(s): Series: SpringerBriefs in MathematicsPublisher: Cham : Springer International Publishing : Imprint: Springer, 2014Description: X, 120 p. 8 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319058528
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 519.2 23
LOC classification:
  • QA273.A1-274.9
  • QA274-274.9
Online resources:
Contents:
Random Walk, Green Function, Equilibrium Measure -- Random Interlacements: First Definition and Basic Properties.- Random Walk on the Torus and Random Interlacements.- Poisson Point Processes.- Random Interlacements Point Process.- Percolation of the Vacant Set.- Source of Correlations and Decorrelation via Coupling.- Decoupling Inequalities -- Phase Transition of Vu -- Coupling of Point Measures of Excursions.
In: Springer eBooksSummary: This book gives a self-contained introduction to the theory of random interlacements. The intended reader of the book is a graduate student with a background in probability theory who wants to learn about the fundamental results and methods of this rapidly emerging field of research. The model was introduced by Sznitman in 2007 in order to describe the local picture left by the trace of a random walk on a large discrete torus when it runs up to times proportional to the volume of the torus. Random interlacements is a new percolation model on the d-dimensional lattice. The main results covered by the book include the full proof of the local convergence of random walk trace on the torus to random interlacements and the full proof of the percolation phase transition of the vacant set of random interlacements in all dimensions. The reader will become familiar with the techniques relevant to working with the underlying Poisson Process and the method of multi-scale renormalization, which helps in overcoming the challenges posed by the long-range correlations present in the model. The aim is to engage the reader in the world of random interlacements by means of detailed explanations, exercises and heuristics. Each chapter ends with short survey of related results with up-to date pointers to the literature.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Random Walk, Green Function, Equilibrium Measure -- Random Interlacements: First Definition and Basic Properties.- Random Walk on the Torus and Random Interlacements.- Poisson Point Processes.- Random Interlacements Point Process.- Percolation of the Vacant Set.- Source of Correlations and Decorrelation via Coupling.- Decoupling Inequalities -- Phase Transition of Vu -- Coupling of Point Measures of Excursions.

This book gives a self-contained introduction to the theory of random interlacements. The intended reader of the book is a graduate student with a background in probability theory who wants to learn about the fundamental results and methods of this rapidly emerging field of research. The model was introduced by Sznitman in 2007 in order to describe the local picture left by the trace of a random walk on a large discrete torus when it runs up to times proportional to the volume of the torus. Random interlacements is a new percolation model on the d-dimensional lattice. The main results covered by the book include the full proof of the local convergence of random walk trace on the torus to random interlacements and the full proof of the percolation phase transition of the vacant set of random interlacements in all dimensions. The reader will become familiar with the techniques relevant to working with the underlying Poisson Process and the method of multi-scale renormalization, which helps in overcoming the challenges posed by the long-range correlations present in the model. The aim is to engage the reader in the world of random interlacements by means of detailed explanations, exercises and heuristics. Each chapter ends with short survey of related results with up-to date pointers to the literature.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu