Amazon cover image
Image from Amazon.com

Online Damage Detection in Structural Systems [electronic resource] : Applications of Proper Orthogonal Decomposition, and Kalman and Particle Filters / by Saeed Eftekhar Azam.

By: Contributor(s): Series: SpringerBriefs in Applied Sciences and TechnologyPublisher: Cham : Springer International Publishing : Imprint: Springer, 2014Description: XII, 135 p. 87 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319025599
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 620 23
LOC classification:
  • TA355
  • TA352-356
Online resources:
Contents:
Introduction -- Recursive Bayesian estimation of partially observed dynamic systems -- Model Order Reduction of dynamic systems via Proper Orthogonal Decomposition -- POD-Kalman observer for linear time invariant dynamic systems -- Dual estimation and reduced order modeling of damaging structures -- Summary of the recursive Bayesian inference schemes.
In: Springer eBooksSummary: This monograph assesses in depth the application of recursive Bayesian filters in structural health monitoring. Although the methods and algorithms used here are well established in the field of automatic control, their application in the realm of civil engineering has to date been limited. The monograph is therefore intended as a reference for structural and civil engineers who wish to conduct research in this field. To this end, the main notions underlying the families of Kalman and particle filters are scrutinized through explanations within the text and numerous numerical examples. The main limitations to their application in monitoring of high-rise buildings are discussed, and a remedy based on a synergy of reduced order modeling (based on proper orthogonal decomposition) and Bayesian estimation is proposed. The performance and effectiveness of the proposed algorithm is demonstrated via pseudo-experimental evaluations.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Recursive Bayesian estimation of partially observed dynamic systems -- Model Order Reduction of dynamic systems via Proper Orthogonal Decomposition -- POD-Kalman observer for linear time invariant dynamic systems -- Dual estimation and reduced order modeling of damaging structures -- Summary of the recursive Bayesian inference schemes.

This monograph assesses in depth the application of recursive Bayesian filters in structural health monitoring. Although the methods and algorithms used here are well established in the field of automatic control, their application in the realm of civil engineering has to date been limited. The monograph is therefore intended as a reference for structural and civil engineers who wish to conduct research in this field. To this end, the main notions underlying the families of Kalman and particle filters are scrutinized through explanations within the text and numerous numerical examples. The main limitations to their application in monitoring of high-rise buildings are discussed, and a remedy based on a synergy of reduced order modeling (based on proper orthogonal decomposition) and Bayesian estimation is proposed. The performance and effectiveness of the proposed algorithm is demonstrated via pseudo-experimental evaluations.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu