Amazon cover image
Image from Amazon.com

Low-Power Smart Imagers for Vision-Enabled Sensor Networks [electronic resource] / by Jorge Fernández-Berni, Ricardo Carmona-Galán, Ángel Rodríguez-Vázquez.

By: Contributor(s): Publisher: New York, NY : Springer New York, 2012Description: XXIV, 156 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781461423928
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.3815 23
LOC classification:
  • TK7888.4
Online resources:
Contents:
Introduction -- Vision-enabled WSN Nodes: State of the Art -- Processing Primitives for Image Simplification -- VLSI Implementation of Linear Diffusion -- FLIP-Q: A QCIF Resolution Focal-plane Array for Low-power Image Processing -- Wi-FLIP: A Low-power Vision-enabled WSN Node -- Case Study: Early Detection of Forest Fires.
In: Springer eBooksSummary: This book presents a comprehensive, systematic approach to the development of vision system architectures that employ sensory-processing concurrency and parallel processing to meet the autonomy challenges posed by a variety of safety and surveillance applications.  Coverage includes a thorough analysis of resistive diffusion networks embedded within an image sensor array. This analysis supports a systematic approach to the design of spatial image filters and their implementation as vision chips in CMOS technology. The book also addresses system-level considerations pertaining to the embedding of these vision chips into vision-enabled wireless sensor networks.  Describes a system-level approach for designing of vision devices and  embedding them into vision-enabled, wireless sensor networks; Surveys state-of-the-art, vision-enabled WSN nodes; Includes details of specifications and challenges of vision-enabled WSNs; Explains architectures for low-energy CMOS vision chips with embedded, programmable spatial filtering capabilities; Includes considerations pertaining to the integration of vision chips into off-the-shelf WSN platforms.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Vision-enabled WSN Nodes: State of the Art -- Processing Primitives for Image Simplification -- VLSI Implementation of Linear Diffusion -- FLIP-Q: A QCIF Resolution Focal-plane Array for Low-power Image Processing -- Wi-FLIP: A Low-power Vision-enabled WSN Node -- Case Study: Early Detection of Forest Fires.

This book presents a comprehensive, systematic approach to the development of vision system architectures that employ sensory-processing concurrency and parallel processing to meet the autonomy challenges posed by a variety of safety and surveillance applications.  Coverage includes a thorough analysis of resistive diffusion networks embedded within an image sensor array. This analysis supports a systematic approach to the design of spatial image filters and their implementation as vision chips in CMOS technology. The book also addresses system-level considerations pertaining to the embedding of these vision chips into vision-enabled wireless sensor networks.  Describes a system-level approach for designing of vision devices and  embedding them into vision-enabled, wireless sensor networks; Surveys state-of-the-art, vision-enabled WSN nodes; Includes details of specifications and challenges of vision-enabled WSNs; Explains architectures for low-energy CMOS vision chips with embedded, programmable spatial filtering capabilities; Includes considerations pertaining to the integration of vision chips into off-the-shelf WSN platforms.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu