Amazon cover image
Image from Amazon.com

Baseband Analog Circuits for Software Defined Radio [electronic resource] / by Vito Giannini, Jan Craninckx, Andrea Baschirotto.

By: Contributor(s): Series: Analog Circuits and Signal Processing SeriesPublisher: Dordrecht : Springer Netherlands, 2008Description: XVI, 144 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781402065385
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.382 23
LOC classification:
  • TK1-9971
Online resources:
Contents:
4G Mobile Terminals -- Software Defined Radio Front Ends -- Link Budget Analysis in the Sdr Analog Baseband Section -- Flexible Analog Building Blocks -- Implementations of Flexible Filters for Sdr Front End.
In: Springer eBooksSummary: By the end of this decade, a 4G wireless terminal will be available that provides high quality multimedia, personalized services, and ubiquitous multi-standard broadband connectivity with a reasonable power consumption. In this context, a multi-band transceiver is needed that provides a high-level of programmability while keeping low design complexity and costs. Software Defined Radio (SDR) is the most promising technology to implement such a terminal as it enables multi-mode reception by tuning to any frequency band, by selecting any channel bandwidth, and by detecting any modulation. Baseband Analog Circuits for Software Defined Radio aims to describe the transition towards a Software Radio from the analog design perspective. As the original idea of a "full-digital" Software Radio is far from the state-of-art, an analog front-end is still needed to achieve a feasible implementation. Most of the existent front-end architectures are explored from the flexibility point of view. A complete overview of the actual state-of-art for reconfigurable transceivers is given in detail, focusing on the challenges imposed by flexibility in analog design. As far as the design of adaptive analog circuits is concerned, specifications like bandwidth, gain, noise, resolution and linearity should be programmable. The development of circuit topologies and architectures that can be easily reconfigured while providing a near optimal power/performance trade-offs is a key challenge. In this book, we tackle this challenge mainly for baseband analog circuits, i.e. amplifiers and filters, proposing efficient solutions that provide a high level of programmability. Measurements results validate the design strategies.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

4G Mobile Terminals -- Software Defined Radio Front Ends -- Link Budget Analysis in the Sdr Analog Baseband Section -- Flexible Analog Building Blocks -- Implementations of Flexible Filters for Sdr Front End.

By the end of this decade, a 4G wireless terminal will be available that provides high quality multimedia, personalized services, and ubiquitous multi-standard broadband connectivity with a reasonable power consumption. In this context, a multi-band transceiver is needed that provides a high-level of programmability while keeping low design complexity and costs. Software Defined Radio (SDR) is the most promising technology to implement such a terminal as it enables multi-mode reception by tuning to any frequency band, by selecting any channel bandwidth, and by detecting any modulation. Baseband Analog Circuits for Software Defined Radio aims to describe the transition towards a Software Radio from the analog design perspective. As the original idea of a "full-digital" Software Radio is far from the state-of-art, an analog front-end is still needed to achieve a feasible implementation. Most of the existent front-end architectures are explored from the flexibility point of view. A complete overview of the actual state-of-art for reconfigurable transceivers is given in detail, focusing on the challenges imposed by flexibility in analog design. As far as the design of adaptive analog circuits is concerned, specifications like bandwidth, gain, noise, resolution and linearity should be programmable. The development of circuit topologies and architectures that can be easily reconfigured while providing a near optimal power/performance trade-offs is a key challenge. In this book, we tackle this challenge mainly for baseband analog circuits, i.e. amplifiers and filters, proposing efficient solutions that provide a high level of programmability. Measurements results validate the design strategies.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu