Amazon cover image
Image from Amazon.com

Formation and Cooperative Behaviour of Protein Complexes on the Cell Membrane [electronic resource] / by Ksenia Guseva.

By: Contributor(s): Series: Springer ThesesPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012Description: XII, 80 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642239885
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 571.64 23
LOC classification:
  • QH601-602
  • QR77
Online resources:
Contents:
Introduction -- The Role of Fragmentation on the Formation of Homomeric Protein Complexes -- Collective Response of Self-organised Clusters of Mechanosensitive Channels -- Assembly and Fragmentation of Tat Pores -- Conclusion.
In: Springer eBooksSummary: With the aim of providing a deeper insight into possible mechanisms of biological self-organization, this thesis presents new approaches to describe the process of self-assembly and the impact of spatial organization on the function of membrane proteins, from a statistical physics point of view. It focuses on three important scenarios: the assembly of membrane proteins, the collective response of mechanosensitive channels and the function of the twin arginine translocation (Tat) system. Using methods from equilibrium and non-equilibrium statistical mechanics, general conclusions were drawn that demonstrate the importance of the protein-protein interactions. Namely, in the first part a general aggregation dynamics model is formulated, and used to show that fragmentation crucially affects the efficiency of the self-assembly process of proteins. In the second part, by mapping the membrane-mediated forces into a simplified many-body system, the dynamic and equilibrium behaviour of interacting mechanosensitive channels is derived, showing that protein agglomeration strongly impacts its desired function. The final part develops a model that incorporates both the agglomeration and transport function of the Tat system, thereby providing a comprehensive description of this self-organizing process.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- The Role of Fragmentation on the Formation of Homomeric Protein Complexes -- Collective Response of Self-organised Clusters of Mechanosensitive Channels -- Assembly and Fragmentation of Tat Pores -- Conclusion.

With the aim of providing a deeper insight into possible mechanisms of biological self-organization, this thesis presents new approaches to describe the process of self-assembly and the impact of spatial organization on the function of membrane proteins, from a statistical physics point of view. It focuses on three important scenarios: the assembly of membrane proteins, the collective response of mechanosensitive channels and the function of the twin arginine translocation (Tat) system. Using methods from equilibrium and non-equilibrium statistical mechanics, general conclusions were drawn that demonstrate the importance of the protein-protein interactions. Namely, in the first part a general aggregation dynamics model is formulated, and used to show that fragmentation crucially affects the efficiency of the self-assembly process of proteins. In the second part, by mapping the membrane-mediated forces into a simplified many-body system, the dynamic and equilibrium behaviour of interacting mechanosensitive channels is derived, showing that protein agglomeration strongly impacts its desired function. The final part develops a model that incorporates both the agglomeration and transport function of the Tat system, thereby providing a comprehensive description of this self-organizing process.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu