Amazon cover image
Image from Amazon.com

Data-Driven Design of Fault Diagnosis Systems [electronic resource] : Nonlinear Multimode Processes / by Adel Haghani Abandan Sari.

By: Contributor(s): Publisher: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2014Description: XIX, 136 p. 39 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783658058074
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 629.8 23
LOC classification:
  • TJ210.2-211.495
  • TJ163.12
Online resources:
Contents:
Introduction -- An overview of fault diagnosis techniques -- Fault detection in multimode nonlinear systems -- Fault detection in multimode nonlinear dynamic systems -- Fault diagnosis in multimode nonlinear processes -- Bayesian approach for fault treatment -- Application and benchmark study -- Summary.
In: Springer eBooksSummary: In many industrial applications early detection and diagnosis of abnormal behavior of the plant is of great importance. During the last decades, the complexity of process plants has been drastically increased, which imposes great challenges in development of model-based monitoring approaches and it sometimes becomes unrealistic for modern large-scale processes. The main objective of Adel Haghani Abandan Sari is to study efficient fault diagnosis techniques for complex industrial systems using process historical data and considering the nonlinear behavior of the process. To this end, different methods are presented to solve the fault diagnosis problem based on the overall behavior of the process and its dynamics. Moreover, a novel technique is proposed for fault isolation and determination of the root-cause of the faults in the system, based on the fault impacts on the process measurements. Contents Process monitoring Fault diagnosis and fault-tolerant control Data-driven approaches and decision making Target Groups Graduate students and scientists of automatic control and process engineering Engineers in field of process control and monitoring, mechatronic About the Author Adel Haghani Abandan Sari is research assistant with Institute of Automation, university of Rostock. His research interests include data-driven process monitoring and fault-tolerant control with focus on large-scale industrial processes.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- An overview of fault diagnosis techniques -- Fault detection in multimode nonlinear systems -- Fault detection in multimode nonlinear dynamic systems -- Fault diagnosis in multimode nonlinear processes -- Bayesian approach for fault treatment -- Application and benchmark study -- Summary.

In many industrial applications early detection and diagnosis of abnormal behavior of the plant is of great importance. During the last decades, the complexity of process plants has been drastically increased, which imposes great challenges in development of model-based monitoring approaches and it sometimes becomes unrealistic for modern large-scale processes. The main objective of Adel Haghani Abandan Sari is to study efficient fault diagnosis techniques for complex industrial systems using process historical data and considering the nonlinear behavior of the process. To this end, different methods are presented to solve the fault diagnosis problem based on the overall behavior of the process and its dynamics. Moreover, a novel technique is proposed for fault isolation and determination of the root-cause of the faults in the system, based on the fault impacts on the process measurements. Contents Process monitoring Fault diagnosis and fault-tolerant control Data-driven approaches and decision making Target Groups Graduate students and scientists of automatic control and process engineering Engineers in field of process control and monitoring, mechatronic About the Author Adel Haghani Abandan Sari is research assistant with Institute of Automation, university of Rostock. His research interests include data-driven process monitoring and fault-tolerant control with focus on large-scale industrial processes.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu