Amazon cover image
Image from Amazon.com

Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems [electronic resource] / by Heinz Hanβmann.

By: Contributor(s): Series: Lecture Notes in Mathematics ; 1893Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007Description: XVI, 242 p. 22 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540388968
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 515.39 23
  • 515.48 23
LOC classification:
  • QA313
Online resources:
Contents:
Bifurcations of Equilibria -- Bifurcations of Periodic Orbits -- Bifurcations of Invariant Tori -- Perturbations of Ramified Torus Bundles -- Planar Singularities -- Stratifications -- Normal Form Theory -- Proof of the Main KAM Theorem -- Proofs of the Necessary Lemmata.
In: Springer eBooksSummary: Once again KAM theory is committed in the context of nearly integrable Hamiltonian systems. While elliptic and hyperbolic tori determine the distribution of maximal invariant tori, they themselves form n-parameter families. Hence, without the need for untypical conditions or external parameters, torus bifurcations of high co-dimension may be found in a single given Hamiltonian system. The text moves gradually from the integrable case, in which symmetries allow for reduction to bifurcating equilibria, to non-integrability, where smooth parametrisations have to be replaced by Cantor sets. Planar singularities and their versal unfoldings are an important ingredient that helps to explain the underlying dynamics in a transparent way.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Bifurcations of Equilibria -- Bifurcations of Periodic Orbits -- Bifurcations of Invariant Tori -- Perturbations of Ramified Torus Bundles -- Planar Singularities -- Stratifications -- Normal Form Theory -- Proof of the Main KAM Theorem -- Proofs of the Necessary Lemmata.

Once again KAM theory is committed in the context of nearly integrable Hamiltonian systems. While elliptic and hyperbolic tori determine the distribution of maximal invariant tori, they themselves form n-parameter families. Hence, without the need for untypical conditions or external parameters, torus bifurcations of high co-dimension may be found in a single given Hamiltonian system. The text moves gradually from the integrable case, in which symmetries allow for reduction to bifurcating equilibria, to non-integrability, where smooth parametrisations have to be replaced by Cantor sets. Planar singularities and their versal unfoldings are an important ingredient that helps to explain the underlying dynamics in a transparent way.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu