Amazon cover image
Image from Amazon.com

Thermal Properties of Green Polymers and Biocomposites [electronic resource] / by Tatsuko Hatakeyama, Hyoe Hatakeyama.

By: Contributor(s): Series: Hot Topics in Thermal Analysis and Calorimetry ; 4Publisher: Dordrecht : Springer Netherlands, 2005Description: XII, 332 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781402023545
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 541.2254 23
LOC classification:
  • QD380-388
Online resources:
Contents:
Characterization of Green Polymers -- Thermal Properties of Cellulose and its Derivatives -- Polysaccharides from Plants -- Lignin -- PCL Derivatives from Saccharides, Cellulose and Lignin -- Environmentallly Compatible Polyurethanes Derived from Saccharides, Polysaccharides and Lignin -- Bio- and Geo-Composites Containing Plant Materials.
In: Springer eBooksSummary: Environmentally compatible polymers (green polymers) are the key to sustainable developments for our rich and convenient life. In order to develop green polymers, it is essential to understand that nature constructs a variety of materials that can be used. Plant materials such as cellulose, hemicellulose and lignin are the largest organic resources. Thermal Properties of Green Polymers and Biocomposites is unique in that it introduces thermal analysis applicable to green polymers and provides fundamental thermal properties of cellulose, polysaccharides and lignin. The book includes over 370 figures concerning thermal properties of green polymers with detailed experimental conditions. It also introduces newly patented environmentally compatible green polymers. Thermal properties provided include: thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), thermomechanometry (TMA) and dynamic mechanical analysis (DMA). This book covers two domains: -Fundamentals of thermal properties of cellulose, polysaccharides and lignin (Chapters 3 to 5); -Developments of new biocompatible polymers derived from plant materials (Chapters 6 to 8). This book is aimed at advanced users and specialists who are interested in green polymers and who utilize thermal analyses for the above polymers, especially in research laboratories, both academic and industrial.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Characterization of Green Polymers -- Thermal Properties of Cellulose and its Derivatives -- Polysaccharides from Plants -- Lignin -- PCL Derivatives from Saccharides, Cellulose and Lignin -- Environmentallly Compatible Polyurethanes Derived from Saccharides, Polysaccharides and Lignin -- Bio- and Geo-Composites Containing Plant Materials.

Environmentally compatible polymers (green polymers) are the key to sustainable developments for our rich and convenient life. In order to develop green polymers, it is essential to understand that nature constructs a variety of materials that can be used. Plant materials such as cellulose, hemicellulose and lignin are the largest organic resources. Thermal Properties of Green Polymers and Biocomposites is unique in that it introduces thermal analysis applicable to green polymers and provides fundamental thermal properties of cellulose, polysaccharides and lignin. The book includes over 370 figures concerning thermal properties of green polymers with detailed experimental conditions. It also introduces newly patented environmentally compatible green polymers. Thermal properties provided include: thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), thermomechanometry (TMA) and dynamic mechanical analysis (DMA). This book covers two domains: -Fundamentals of thermal properties of cellulose, polysaccharides and lignin (Chapters 3 to 5); -Developments of new biocompatible polymers derived from plant materials (Chapters 6 to 8). This book is aimed at advanced users and specialists who are interested in green polymers and who utilize thermal analyses for the above polymers, especially in research laboratories, both academic and industrial.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu