Amazon cover image
Image from Amazon.com

CMOS Circuits for Piezoelectric Energy Harvesters [electronic resource] : Efficient Power Extraction, Interface Modeling and Loss Analysis / by Thorsten Hehn, Yiannos Manoli.

By: Contributor(s): Series: Springer Series in Advanced Microelectronics ; 38Publisher: Dordrecht : Springer Netherlands : Imprint: Springer, 2015Description: XVII, 204 p. 137 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789401792882
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.3815 23
LOC classification:
  • TK7867-7867.5
Online resources:
Contents:
1 Introduction -- 2 Piezoelectricity and Energy Harvester Modelling -- 3 Analysis of Different Interface Circuits -- 4 Theory of the Proposed PSCE Circuit -- 5 Implementation of the PSCE Circuit on Transistor Level -- 6 Performance Analysis of the PSCE Chip -- 7 Conclusions and Outlook. References -- Appendix A Mathematical Calculations -- A.1 Solution of the Linear Differential Equation Systems -- A.2 Flux Property -- A.3 Trigonometric Relations -- A.4 Numerical Calculation.
In: Springer eBooksSummary: This book deals with the challenge of exploiting ambient vibrational energy which can be used to power small and low-power electronic devices, e.g. wireless sensor nodes. Generally, particularly for low voltage amplitudes, low-loss rectification is required to achieve high conversion efficiency. In the special case of piezoelectric energy harvesting, pulsed charge extraction has the potential to extract more power compared to a single rectifier. For this purpose, a fully autonomous CMOS integrated interface circuit for piezoelectric generators which fulfills these requirements is presented. Due to these key properties enabling universal usage, other CMOS designers working in the field of energy harvesting will be encouraged to use some of the shown structures for their own implementations. The book is unique in the sense that it highlights the design process from scratch to the final chip. Hence, it gives the designer a comprehensive guide of how to (i) setup an appropriate harvester model to get realistic simulation results, (ii) design the integrated circuits for low power operation, (iii) setup a laboratory measurement environment in order to extensively characterize the chip in combination with the real harvester, and finally, (iv) interpret the simulation/measurement results in order to improve the chip performance. Since the dimensions of all devices (transistors, resistors etc.) are given, readers and other designers can easily re-use the presented circuit concepts.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1 Introduction -- 2 Piezoelectricity and Energy Harvester Modelling -- 3 Analysis of Different Interface Circuits -- 4 Theory of the Proposed PSCE Circuit -- 5 Implementation of the PSCE Circuit on Transistor Level -- 6 Performance Analysis of the PSCE Chip -- 7 Conclusions and Outlook. References -- Appendix A Mathematical Calculations -- A.1 Solution of the Linear Differential Equation Systems -- A.2 Flux Property -- A.3 Trigonometric Relations -- A.4 Numerical Calculation.

This book deals with the challenge of exploiting ambient vibrational energy which can be used to power small and low-power electronic devices, e.g. wireless sensor nodes. Generally, particularly for low voltage amplitudes, low-loss rectification is required to achieve high conversion efficiency. In the special case of piezoelectric energy harvesting, pulsed charge extraction has the potential to extract more power compared to a single rectifier. For this purpose, a fully autonomous CMOS integrated interface circuit for piezoelectric generators which fulfills these requirements is presented. Due to these key properties enabling universal usage, other CMOS designers working in the field of energy harvesting will be encouraged to use some of the shown structures for their own implementations. The book is unique in the sense that it highlights the design process from scratch to the final chip. Hence, it gives the designer a comprehensive guide of how to (i) setup an appropriate harvester model to get realistic simulation results, (ii) design the integrated circuits for low power operation, (iii) setup a laboratory measurement environment in order to extensively characterize the chip in combination with the real harvester, and finally, (iv) interpret the simulation/measurement results in order to improve the chip performance. Since the dimensions of all devices (transistors, resistors etc.) are given, readers and other designers can easily re-use the presented circuit concepts.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu