Amazon cover image
Image from Amazon.com

Peacocks and Associated Martingales, with Explicit Constructions [electronic resource] / by Francis Hirsch, Christophe Profeta, Bernard Roynette, Marc Yor.

By: Contributor(s): Series: B&SS — Bocconi & Springer SeriesPublisher: Milano : Springer Milan, 2011Description: XXXII, 388 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9788847019089
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 519.2 23
LOC classification:
  • QA273.A1-274.9
  • QA274-274.9
Online resources:
Contents:
Some Examples of Peacocks -- The Sheet Method -- The Time Reversal Method -- The Time Inversion Method -- The Sato Process Method -- The Stochastic Differential Equation Method -- The Skorokhod Embedding (SE) Method. Comparison of Multidimensional Marginals.
In: Springer eBooksSummary: We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep theorem due to Kellerer states that a process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is then said to be associated to this peacock. In this monograph, we exhibit numerous examples of peacocks and associated martingales with the help of different methods: construction of sheets, time reversal, time inversion, self-decomposability, SDE, Skorokhod embeddings… They are developed in eight chapters, with about a hundred of exercises.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Some Examples of Peacocks -- The Sheet Method -- The Time Reversal Method -- The Time Inversion Method -- The Sato Process Method -- The Stochastic Differential Equation Method -- The Skorokhod Embedding (SE) Method. Comparison of Multidimensional Marginals.

We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep theorem due to Kellerer states that a process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is then said to be associated to this peacock. In this monograph, we exhibit numerous examples of peacocks and associated martingales with the help of different methods: construction of sheets, time reversal, time inversion, self-decomposability, SDE, Skorokhod embeddings… They are developed in eight chapters, with about a hundred of exercises.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu