Amazon cover image
Image from Amazon.com

Foliations: Dynamics, Geometry and Topology [electronic resource] / by Masayuki Asaoka, Aziz El Kacimi Alaoui, Steven Hurder, Ken Richardson ; edited by Jesús Álvarez López, Marcel Nicolau.

By: Contributor(s): Series: Advanced Courses in Mathematics - CRM BarcelonaPublisher: Basel : Springer Basel : Imprint: Birkhäuser, 2014Description: IX, 198 p. 20 illus., 10 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783034808712
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 514.34 23
LOC classification:
  • QA613-613.8
  • QA613.6-613.66
Online resources:
Contents:
Fundamentals of Foliation Theory -- Foliation Dynamics -- Deformation of Locally Free Actions and Leafwise Cohomology -- Transversal Dirac Operators on Distributions, Foliations, and G-Manifolds.
In: Springer eBooksSummary: This book is an introduction to several active research topics in Foliation Theory and its connections with other areas. It contains expository lectures showing the diversity of ideas and methods arising and used in the study of foliations. The lectures by A. El Kacimi Alaoui offer an introduction to Foliation Theory, with emphasis on examples and transverse structures. S. Hurder's lectures apply ideas from smooth dynamical systems to develop useful concepts in the study of foliations, like limit sets and cycles for leaves, leafwise geodesic flow, transverse exponents, stable manifolds, Pesin Theory, and hyperbolic, parabolic, and elliptic types of foliations, all of them illustrated with examples. The lectures by M. Asaoka are devoted to the computation of the leafwise cohomology of orbit foliations given by locally free actions of certain Lie groups, and its application to the description of the deformation of those actions. In the lectures by K. Richardson, he studies the geometric and analytic properties of transverse Dirac operators for Riemannian foliations and compact Lie group actions, and explains a recently proved index formula. Besides students and researchers of Foliation Theory, this book will appeal to mathematicians interested in the applications to foliations of subjects like topology of manifolds, dynamics, cohomology or global analysis.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Fundamentals of Foliation Theory -- Foliation Dynamics -- Deformation of Locally Free Actions and Leafwise Cohomology -- Transversal Dirac Operators on Distributions, Foliations, and G-Manifolds.

This book is an introduction to several active research topics in Foliation Theory and its connections with other areas. It contains expository lectures showing the diversity of ideas and methods arising and used in the study of foliations. The lectures by A. El Kacimi Alaoui offer an introduction to Foliation Theory, with emphasis on examples and transverse structures. S. Hurder's lectures apply ideas from smooth dynamical systems to develop useful concepts in the study of foliations, like limit sets and cycles for leaves, leafwise geodesic flow, transverse exponents, stable manifolds, Pesin Theory, and hyperbolic, parabolic, and elliptic types of foliations, all of them illustrated with examples. The lectures by M. Asaoka are devoted to the computation of the leafwise cohomology of orbit foliations given by locally free actions of certain Lie groups, and its application to the description of the deformation of those actions. In the lectures by K. Richardson, he studies the geometric and analytic properties of transverse Dirac operators for Riemannian foliations and compact Lie group actions, and explains a recently proved index formula. Besides students and researchers of Foliation Theory, this book will appeal to mathematicians interested in the applications to foliations of subjects like topology of manifolds, dynamics, cohomology or global analysis.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu