Amazon cover image
Image from Amazon.com

Boosted Statistical Relational Learners [electronic resource] : From Benchmarks to Data-Driven Medicine / by Sriraam Natarajan, Kristian Kersting, Tushar Khot, Jude Shavlik.

By: Contributor(s): Series: SpringerBriefs in Computer SciencePublisher: Cham : Springer International Publishing : Imprint: Springer, 2014Description: VIII, 74 p. 25 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319136448
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 006.3 23
LOC classification:
  • Q334-342
  • TJ210.2-211.495
Online resources:
Contents:
Introduction -- Statistical Relational Learning -- Boosting (Bi-)Directed Relational Models -- Boosting Undirected Relational Models -- Boosting in the presence of missing data -- Boosting Statistical Relational Learning in Action -- Appendix: Booster System.
In: Springer eBooksSummary: This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications. The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems. Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics will also find this brief a valuable resource.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Statistical Relational Learning -- Boosting (Bi-)Directed Relational Models -- Boosting Undirected Relational Models -- Boosting in the presence of missing data -- Boosting Statistical Relational Learning in Action -- Appendix: Booster System.

This SpringerBrief addresses the challenges of analyzing multi-relational and noisy data by proposing several Statistical Relational Learning (SRL) methods. These methods combine the expressiveness of first-order logic and the ability of probability theory to handle uncertainty. It provides an overview of the methods and the key assumptions that allow for adaptation to different models and real world applications. The models are highly attractive due to their compactness and comprehensibility but learning their structure is computationally intensive. To combat this problem, the authors review the use of functional gradients for boosting the structure and the parameters of statistical relational models. The algorithms have been applied successfully in several SRL settings and have been adapted to several real problems from Information extraction in text to medical problems. Including both context and well-tested applications, Boosting Statistical Relational Learning from Benchmarks to Data-Driven Medicine is designed for researchers and professionals in machine learning and data mining. Computer engineers or students interested in statistics, data management, or health informatics will also find this brief a valuable resource.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu