Amazon cover image
Image from Amazon.com

Hyperbolic Chaos [electronic resource] : A Physicist’s View / by Sergey P. Kuznetsov.

By: Contributor(s): Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2012Description: XVI, 320 p. 80 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642236662
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 621 23
LOC classification:
  • QC174.7-175.36
Online resources:
Contents:
Part I Basic Notions and Review: Dynamical Systems and Hyperbolicity -- Dynamical Systems and Hyperbolicity -- Part II Low-Dimensional Models: Kicked Mechanical Models and Differential Equations with Periodic Switch -- Non-Autonomous Systems of Coupled Self-Oscillators -- Autonomous Low-dimensional Systems with Uniformly Hyperbolic Attractors in the Poincar´e Maps -- Parametric Generators of Hyperbolic Chaos -- Recognizing the Hyperbolicity: Cone Criterion and Other Approaches -- Part III Higher-Dimensional Systems and Phenomena: Systems of Four Alternately Excited Non-autonomous Oscillators -- Autonomous Systems Based on Dynamics Close to Heteroclinic Cycle -- Systems with Time-delay Feedback -- Chaos in Co-operative Dynamics of Alternately Synchronized Ensembles of Globally Coupled Self-oscillators -- Part IV Experimental Studies: Electronic Device with Attractor of Smale-Williams Type -- Delay-time Electronic Devices Generating Trains of Oscillations with Phases Governed by Chaotic Maps.
In: Springer eBooksSummary: "Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos.   This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering.   Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.  .
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Part I Basic Notions and Review: Dynamical Systems and Hyperbolicity -- Dynamical Systems and Hyperbolicity -- Part II Low-Dimensional Models: Kicked Mechanical Models and Differential Equations with Periodic Switch -- Non-Autonomous Systems of Coupled Self-Oscillators -- Autonomous Low-dimensional Systems with Uniformly Hyperbolic Attractors in the Poincar´e Maps -- Parametric Generators of Hyperbolic Chaos -- Recognizing the Hyperbolicity: Cone Criterion and Other Approaches -- Part III Higher-Dimensional Systems and Phenomena: Systems of Four Alternately Excited Non-autonomous Oscillators -- Autonomous Systems Based on Dynamics Close to Heteroclinic Cycle -- Systems with Time-delay Feedback -- Chaos in Co-operative Dynamics of Alternately Synchronized Ensembles of Globally Coupled Self-oscillators -- Part IV Experimental Studies: Electronic Device with Attractor of Smale-Williams Type -- Delay-time Electronic Devices Generating Trains of Oscillations with Phases Governed by Chaotic Maps.

"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos.   This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering.   Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.  .

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu