Amazon cover image
Image from Amazon.com

Stability and Convergence of Mechanical Systems with Unilateral Constraints [electronic resource] / edited by Remco I. Leine, Nathan van de Wouw.

Contributor(s): Series: Lecture Notes in Applied and Computational Mechanics ; 36Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008Description: XIV, 236 p. 56 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540769750
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 621 23
LOC classification:
  • TJ1-1570
Online resources:
Contents:
Non-smooth Analysis -- Measure and Integration Theory -- Non-smooth Dynamical Systems -- Mechanical Systems with Set-valued Force Laws -- Lyapunov Stability Theory for Measure Differential Inclusions -- Stability Properties in Mechanical Systems -- Convergence Properties of Monotone Measure Differential Inclusions -- Concluding Remarks.
In: Springer eBooksSummary: Stability of motion is a central theme in the dynamics of mechanical systems. While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, impact and friction. Such unilateral constraints give rise to non-smooth dynamical models for which stability theory is developed in this work. The book starts with the treatise of the mathematical background on non-smooth analysis, measure and integration theory and an introduction to the field of non-smooth dynamical systems. The unilateral constraints are modelled in the framework of set-valued force laws developed in the field of non-smooth mechanics. The embedding of these constitutive models in the dynamics of mechanical systems gives rises to dynamical models with impulsive phenomena. This book uses the mathematical framework of measure differential inclusions to formalise such models. The book proceeds with the presentation of stability results for measure differential inclusions. These stability results are then applied to nonlinear mechanical systems with unilateral constraints. The book closes with the study of the convergence property for a class of measure differential inclusions; a stability property for systems with time-varying inputs which is shown to be highly instrumental in the context of the control of mechanical systems with unilateral constraints. While the book presents a profound stability theory for mechanical systems with unilateral constraints, it also has a tutorial value on the modelling of such systems in the framework of measure differential inclusions. The work will be of interest to engineers, scientists and students working in the field of non-smooth mechanics and dynamics.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Non-smooth Analysis -- Measure and Integration Theory -- Non-smooth Dynamical Systems -- Mechanical Systems with Set-valued Force Laws -- Lyapunov Stability Theory for Measure Differential Inclusions -- Stability Properties in Mechanical Systems -- Convergence Properties of Monotone Measure Differential Inclusions -- Concluding Remarks.

Stability of motion is a central theme in the dynamics of mechanical systems. While the stability theory for systems with bilateral constraints is a well-established field, this monograph represents a systematic study of mechanical systems with unilateral constraints, such as unilateral contact, impact and friction. Such unilateral constraints give rise to non-smooth dynamical models for which stability theory is developed in this work. The book starts with the treatise of the mathematical background on non-smooth analysis, measure and integration theory and an introduction to the field of non-smooth dynamical systems. The unilateral constraints are modelled in the framework of set-valued force laws developed in the field of non-smooth mechanics. The embedding of these constitutive models in the dynamics of mechanical systems gives rises to dynamical models with impulsive phenomena. This book uses the mathematical framework of measure differential inclusions to formalise such models. The book proceeds with the presentation of stability results for measure differential inclusions. These stability results are then applied to nonlinear mechanical systems with unilateral constraints. The book closes with the study of the convergence property for a class of measure differential inclusions; a stability property for systems with time-varying inputs which is shown to be highly instrumental in the context of the control of mechanical systems with unilateral constraints. While the book presents a profound stability theory for mechanical systems with unilateral constraints, it also has a tutorial value on the modelling of such systems in the framework of measure differential inclusions. The work will be of interest to engineers, scientists and students working in the field of non-smooth mechanics and dynamics.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu