Amazon cover image
Image from Amazon.com

Introduction to Quasi-Monte Carlo Integration and Applications [electronic resource] / by Gunther Leobacher, Friedrich Pillichshammer.

By: Contributor(s): Series: Compact Textbooks in MathematicsPublisher: Cham : Springer International Publishing : Imprint: Birkhäuser, 2014Description: XII, 195 p. 21 illus., 16 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319034256
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 512.7 23
LOC classification:
  • QA241-247.5
Online resources:
Contents:
Preface -- Notation -- 1 Introduction -- 2 Uniform Distribution Modulo One -- 3 QMC Integration in Reproducing Kernel Hilbert Spaces -- 4 Lattice Point Sets -- 5 (t, m, s)-nets and (t, s)-Sequences -- 6 A Short Discussion of the Discrepancy Bounds -- 7 Foundations of Financial Mathematics -- 8 Monte Carlo and Quasi-Monte Carlo Simulation -- Bibliography -- Index.
In: Springer eBooksSummary: This textbook introduces readers to the basic concepts of quasi-Monte Carlo methods for numerical integration and to the theory behind them. The comprehensive treatment of the subject with detailed explanations comprises, for example, lattice rules, digital nets and sequences and discrepancy theory. It also presents methods currently used in research and discusses practical applications with an emphasis on finance-related problems. Each chapter closes with suggestions for further reading and with exercises which help students to arrive at a deeper understanding of the material presented. The book is based on a one-semester, two-hour undergraduate course and is well-suited for readers with a basic grasp of algebra, calculus, linear algebra and basic probability theory. It provides an accessible introduction for undergraduate students in mathematics or computer science.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Preface -- Notation -- 1 Introduction -- 2 Uniform Distribution Modulo One -- 3 QMC Integration in Reproducing Kernel Hilbert Spaces -- 4 Lattice Point Sets -- 5 (t, m, s)-nets and (t, s)-Sequences -- 6 A Short Discussion of the Discrepancy Bounds -- 7 Foundations of Financial Mathematics -- 8 Monte Carlo and Quasi-Monte Carlo Simulation -- Bibliography -- Index.

This textbook introduces readers to the basic concepts of quasi-Monte Carlo methods for numerical integration and to the theory behind them. The comprehensive treatment of the subject with detailed explanations comprises, for example, lattice rules, digital nets and sequences and discrepancy theory. It also presents methods currently used in research and discusses practical applications with an emphasis on finance-related problems. Each chapter closes with suggestions for further reading and with exercises which help students to arrive at a deeper understanding of the material presented. The book is based on a one-semester, two-hour undergraduate course and is well-suited for readers with a basic grasp of algebra, calculus, linear algebra and basic probability theory. It provides an accessible introduction for undergraduate students in mathematics or computer science.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu