Amazon cover image
Image from Amazon.com

Algorithmic Learning Theory [electronic resource] : 17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006. Proceedings / edited by José L. Balcázar, Philip M. Long, Frank Stephan.

Contributor(s): Series: Lecture Notes in Computer Science ; 4264Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006Description: XIII, 393 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540466505
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 006.3 23
LOC classification:
  • Q334-342
  • TJ210.2-211.495
Online resources:
Contents:
Editors’ Introduction -- Editors’ Introduction -- Invited Contributions -- Solving Semi-infinite Linear Programs Using Boosting-Like Methods -- e-Science and the Semantic Web: A Symbiotic Relationship -- Spectral Norm in Learning Theory: Some Selected Topics -- Data-Driven Discovery Using Probabilistic Hidden Variable Models -- Reinforcement Learning and Apprenticeship Learning for Robotic Control -- Regular Contributions -- Learning Unions of ?(1)-Dimensional Rectangles -- On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle -- Active Learning in the Non-realizable Case -- How Many Query Superpositions Are Needed to Learn? -- Teaching Memoryless Randomized Learners Without Feedback -- The Complexity of Learning SUBSEQ (A) -- Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Data -- Learning and Extending Sublanguages -- Iterative Learning from Positive Data and Negative Counterexamples -- Towards a Better Understanding of Incremental Learning -- On Exact Learning from Random Walk -- Risk-Sensitive Online Learning -- Leading Strategies in Competitive On-Line Prediction -- Hannan Consistency in On-Line Learning in Case of Unbounded Losses Under Partial Monitoring -- General Discounting Versus Average Reward -- The Missing Consistency Theorem for Bayesian Learning: Stochastic Model Selection -- Is There an Elegant Universal Theory of Prediction? -- Learning Linearly Separable Languages -- Smooth Boosting Using an Information-Based Criterion -- Large-Margin Thresholded Ensembles for Ordinal Regression: Theory and Practice -- Asymptotic Learnability of Reinforcement Problems with Arbitrary Dependence -- Probabilistic Generalization of Simple Grammars and Its Application to Reinforcement Learning -- Unsupervised Slow Subspace-Learning from Stationary Processes -- Learning-Related Complexity of Linear Ranking Functions.
In: Springer eBooks
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Editors’ Introduction -- Editors’ Introduction -- Invited Contributions -- Solving Semi-infinite Linear Programs Using Boosting-Like Methods -- e-Science and the Semantic Web: A Symbiotic Relationship -- Spectral Norm in Learning Theory: Some Selected Topics -- Data-Driven Discovery Using Probabilistic Hidden Variable Models -- Reinforcement Learning and Apprenticeship Learning for Robotic Control -- Regular Contributions -- Learning Unions of ?(1)-Dimensional Rectangles -- On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle -- Active Learning in the Non-realizable Case -- How Many Query Superpositions Are Needed to Learn? -- Teaching Memoryless Randomized Learners Without Feedback -- The Complexity of Learning SUBSEQ (A) -- Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Data -- Learning and Extending Sublanguages -- Iterative Learning from Positive Data and Negative Counterexamples -- Towards a Better Understanding of Incremental Learning -- On Exact Learning from Random Walk -- Risk-Sensitive Online Learning -- Leading Strategies in Competitive On-Line Prediction -- Hannan Consistency in On-Line Learning in Case of Unbounded Losses Under Partial Monitoring -- General Discounting Versus Average Reward -- The Missing Consistency Theorem for Bayesian Learning: Stochastic Model Selection -- Is There an Elegant Universal Theory of Prediction? -- Learning Linearly Separable Languages -- Smooth Boosting Using an Information-Based Criterion -- Large-Margin Thresholded Ensembles for Ordinal Regression: Theory and Practice -- Asymptotic Learnability of Reinforcement Problems with Arbitrary Dependence -- Probabilistic Generalization of Simple Grammars and Its Application to Reinforcement Learning -- Unsupervised Slow Subspace-Learning from Stationary Processes -- Learning-Related Complexity of Linear Ranking Functions.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu