Amazon cover image
Image from Amazon.com

Uniformly Accelerating Charged Particles [electronic resource] : A Threat to the Equivalence Principle / by Stephen N. Lyle.

By: Contributor(s): Series: Fundamental Theories of Physics ; 158Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2008Description: XV, 361 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540684770
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 539.7 23
LOC classification:
  • QC770-798
Online resources:
Contents:
A Doubt about the Equivalence Principle -- From Minkowski Spacetime to General Relativity -- Gravity as a Force in Special Relativity -- Applying the Strong Equivalence Principle -- The Debate Continues -- A More Detailed Radiation Calculation -- Defining the Radiation from a Uniformly Accelerating Charge -- Energy Conservation for a Uniformly Accelerated Charge -- The Threat to the Equivalence Principle According to Fulton and Rohrlich -- Different Predictions of Special Relativity and General Relativity -- Derivation of the Lorentz–Dirac Equation -- Extending the Lorentz–Dirac Equation to Curved Spacetime -- Static Charge in a Static Spacetime -- A Radiation Detector -- The Definitive Mathematical Analysis -- Interpretation of Physical Quantities in General Relativity -- Charged Rocket -- Summary -- Conclusion.
In: Springer eBooksSummary: There has been a long debate about whether uniformly accelerated charges should radiate electromagnetic energy and how one should describe their worldline through a flat spacetime, i.e., whether the Lorentz-Dirac equation is right. There are related questions in curved spacetimes, e.g., do different varieties of equivalence principle apply to charged particles, and can a static charge in a static spacetime radiate electromagnetic energy? The problems with the LD equation in flat spacetime are spelt out in some detail here, and its extension to curved spacetime is discussed. Different equivalence principles are compared and some vindicated. The key papers are discussed in detail and many of their conclusions are significantly revised by the present solution.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

A Doubt about the Equivalence Principle -- From Minkowski Spacetime to General Relativity -- Gravity as a Force in Special Relativity -- Applying the Strong Equivalence Principle -- The Debate Continues -- A More Detailed Radiation Calculation -- Defining the Radiation from a Uniformly Accelerating Charge -- Energy Conservation for a Uniformly Accelerated Charge -- The Threat to the Equivalence Principle According to Fulton and Rohrlich -- Different Predictions of Special Relativity and General Relativity -- Derivation of the Lorentz–Dirac Equation -- Extending the Lorentz–Dirac Equation to Curved Spacetime -- Static Charge in a Static Spacetime -- A Radiation Detector -- The Definitive Mathematical Analysis -- Interpretation of Physical Quantities in General Relativity -- Charged Rocket -- Summary -- Conclusion.

There has been a long debate about whether uniformly accelerated charges should radiate electromagnetic energy and how one should describe their worldline through a flat spacetime, i.e., whether the Lorentz-Dirac equation is right. There are related questions in curved spacetimes, e.g., do different varieties of equivalence principle apply to charged particles, and can a static charge in a static spacetime radiate electromagnetic energy? The problems with the LD equation in flat spacetime are spelt out in some detail here, and its extension to curved spacetime is discussed. Different equivalence principles are compared and some vindicated. The key papers are discussed in detail and many of their conclusions are significantly revised by the present solution.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu