Amazon cover image
Image from Amazon.com

Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines [electronic resource] / by Francesco Montomoli, Mauro Carnevale, Antonio D'Ammaro, Michela Massini, Simone Salvadori.

By: Contributor(s): Series: SpringerBriefs in Applied Sciences and TechnologyPublisher: Cham : Springer International Publishing : Imprint: Springer, 2015Description: XIII, 90 p. 49 illus., 31 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319146812
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 629.1 23
LOC classification:
  • TL787-4050.22
Online resources:
Contents:
Manufacturing in Service Uncertainty and Impact on Life and Performance -- Limitations in Turbomachinery CFD -- Uncertainty Quantification Applied to Gas Turbine Components -- Overview of Uncertainty Quantification Methods -- Future Developments.
In: Springer eBooksSummary: This book introduces novel design techniques developed to increase the safety of aircraft engines. The authors demonstrate how the application of uncertainty methods can overcome problems in the accurate prediction of engine lift, caused by manufacturing error. This in turn ameliorates the difficulty of achieving required safety margins imposed by limits in current design and manufacturing methods. This text shows that even state-of-the-art computational fluid dynamics (CFD) are not able to predict the same performance measured in experiments; CFD methods assume idealised geometries but ideal geometries do not exist, cannot be manufactured and their performance differs from real-world ones. By applying geometrical variations of a few microns, the agreement with experiments improves dramatically, but unfortunately the manufacturing errors in engines or in experiments are unknown. In order to overcome this limitation, uncertainty quantification considers the probability density functions of manufacturing errors. It is then possible to predict the overall variation of the jet engine performance using stochastic techniques. Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines demonstrates that some geometries are not affected by manufacturing errors, meaning that it is possible to design safer engines. Instead of trying to improve the manufacturing accuracy, uncertainty quantification when applied to CFD is able to indicate an improved design direction. This book will be of interest to  gas turbine manufacturers and designers as well as CFD practitioners, specialists and researchers. Graduate and final year undergraduate students may also find it of use.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Manufacturing in Service Uncertainty and Impact on Life and Performance -- Limitations in Turbomachinery CFD -- Uncertainty Quantification Applied to Gas Turbine Components -- Overview of Uncertainty Quantification Methods -- Future Developments.

This book introduces novel design techniques developed to increase the safety of aircraft engines. The authors demonstrate how the application of uncertainty methods can overcome problems in the accurate prediction of engine lift, caused by manufacturing error. This in turn ameliorates the difficulty of achieving required safety margins imposed by limits in current design and manufacturing methods. This text shows that even state-of-the-art computational fluid dynamics (CFD) are not able to predict the same performance measured in experiments; CFD methods assume idealised geometries but ideal geometries do not exist, cannot be manufactured and their performance differs from real-world ones. By applying geometrical variations of a few microns, the agreement with experiments improves dramatically, but unfortunately the manufacturing errors in engines or in experiments are unknown. In order to overcome this limitation, uncertainty quantification considers the probability density functions of manufacturing errors. It is then possible to predict the overall variation of the jet engine performance using stochastic techniques. Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines demonstrates that some geometries are not affected by manufacturing errors, meaning that it is possible to design safer engines. Instead of trying to improve the manufacturing accuracy, uncertainty quantification when applied to CFD is able to indicate an improved design direction. This book will be of interest to  gas turbine manufacturers and designers as well as CFD practitioners, specialists and researchers. Graduate and final year undergraduate students may also find it of use.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu