Amazon cover image
Image from Amazon.com

Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices [electronic resource] / by Antonio Luque, Alexander Virgil Mellor.

By: Contributor(s): Series: SpringerBriefs in Applied Sciences and TechnologyPublisher: Cham : Springer International Publishing : Imprint: Springer, 2015Description: XIII, 202 p. 59 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319145389
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.042 23
LOC classification:
  • TJ807-830
Online resources:
Contents:
Introduction -- Calculations derived of the single band effective mass Equation -- Four band approximation -- Interband optical absorption in quantum well solar cells -- Conclusions.
In: Springer eBooksSummary: This book is intended to be used by materials and device physicists and also solar cells researchers. It models the performance characteristics of nanostructured solar cells and resolves the dynamics of transitions between several levels of these devices. An outstanding insight into the physical behaviour of these devices is provided, which complements experimental work. This therefore allows a better understanding of the results, enabling the development of new experiments and optimization of new devices. It is intended to be accessible to researchers, but also to provide engineering tools which are often only accessible to quantum physicists. Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices is intended to provide an easy-to-handle means to calculate the light absorption in nanostructures, the final goal being the ability to model operational behaviour of nanostructured solar cells. It allows researchers to design new experiments and improve solar cell performances, and offers a means for the easy approximate calculation of the energy spectrum and photon absorption coefficients of nanostructures. This calculation is based on the effective mass model and uses a new Hamiltonian called the Empirical kp Hamiltonian, which is based on a four band kp model.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Calculations derived of the single band effective mass Equation -- Four band approximation -- Interband optical absorption in quantum well solar cells -- Conclusions.

This book is intended to be used by materials and device physicists and also solar cells researchers. It models the performance characteristics of nanostructured solar cells and resolves the dynamics of transitions between several levels of these devices. An outstanding insight into the physical behaviour of these devices is provided, which complements experimental work. This therefore allows a better understanding of the results, enabling the development of new experiments and optimization of new devices. It is intended to be accessible to researchers, but also to provide engineering tools which are often only accessible to quantum physicists. Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices is intended to provide an easy-to-handle means to calculate the light absorption in nanostructures, the final goal being the ability to model operational behaviour of nanostructured solar cells. It allows researchers to design new experiments and improve solar cell performances, and offers a means for the easy approximate calculation of the energy spectrum and photon absorption coefficients of nanostructures. This calculation is based on the effective mass model and uses a new Hamiltonian called the Empirical kp Hamiltonian, which is based on a four band kp model.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu