Amazon cover image
Image from Amazon.com

Skyrmions in Magnetic Materials [electronic resource] / by Shinichiro Seki, Masahito Mochizuki.

By: Contributor(s): Series: SpringerBriefs in PhysicsPublisher: Cham : Springer International Publishing : Imprint: Springer, 2016Edition: 1st ed. 2016Description: V, 69 p. 30 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319246512
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 621.3 23
LOC classification:
  • QA76.889
  • TK7874.887
Online resources:
Contents:
Theoretical Model of Magnetic Skyrmions -- Observation of Skyrmions in Magnetic Materials -- Skyrmions and Electric Currents in Metallic Materials -- Skyrmions and Electric Fields in Insulating Materials -- Summary and Perspective.
In: Springer eBooksSummary: This brief reviews current research on magnetic skyrmions, with emphasis on formation mechanisms, observation techniques, and materials design strategies. The response of skyrmions, both static and dynamical, to various electromagnetic fields is also covered in detail. Recent progress in magnetic imaging techniques has enabled the observation of skyrmions in real space, as well as the analysis of their ordering manner and the details of their internal structure. In metallic systems, conduction electrons moving through the skyrmion spin texture gain a nontrivial quantum Berry phase, which provides topological force to the underlying spin texture and enables the current-induced manipulation of magnetic skyrmions. On the other hand, skyrmions in an insulator can induce electric polarization through relativistic spin-orbit interaction, paving the way for the control of skyrmions by an external electric field without loss of Joule heating. Because of its nanometric scale, particle nature, and electric controllability, skyrmions are considered as potential candidates for new information carriers in the next generation of spintronics devices.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Theoretical Model of Magnetic Skyrmions -- Observation of Skyrmions in Magnetic Materials -- Skyrmions and Electric Currents in Metallic Materials -- Skyrmions and Electric Fields in Insulating Materials -- Summary and Perspective.

This brief reviews current research on magnetic skyrmions, with emphasis on formation mechanisms, observation techniques, and materials design strategies. The response of skyrmions, both static and dynamical, to various electromagnetic fields is also covered in detail. Recent progress in magnetic imaging techniques has enabled the observation of skyrmions in real space, as well as the analysis of their ordering manner and the details of their internal structure. In metallic systems, conduction electrons moving through the skyrmion spin texture gain a nontrivial quantum Berry phase, which provides topological force to the underlying spin texture and enables the current-induced manipulation of magnetic skyrmions. On the other hand, skyrmions in an insulator can induce electric polarization through relativistic spin-orbit interaction, paving the way for the control of skyrmions by an external electric field without loss of Joule heating. Because of its nanometric scale, particle nature, and electric controllability, skyrmions are considered as potential candidates for new information carriers in the next generation of spintronics devices.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu