Amazon cover image
Image from Amazon.com

Interactions Between Charged Particles in a Magnetic Field [electronic resource] : A Theoretical Approach to Ion Stopping in Magnetized Plasmas / by Hrachya Nersisyan, Christian Toepffer, Günter Zwicknagel.

By: Contributor(s): Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007Description: XI, 187 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540698548
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 535.2 23
  • 537.6 23
LOC classification:
  • QC350-467
  • QC630-648
Online resources:
Contents:
Previous Work, Status and Overview -- Challenges Imposed by the Magnetic Field -- Binary Collision Model (BC), Dielectric Theory (DT) -- Classical Trajectory Monte Carlo (CTMC) Simulations -- Particle in Cell (PIC) Simulations -- Binary Collisions -- Lagrangian Formulation -- Force Formulation -- Velocity Transfer in Second-Order Perturbation Theory -- CTMC -- Dielectric Theory -- Vlasov-Poisson, PIC -- Linearized Dynamic Collective Response -- Conformity of DT and BC in the Linear Regime -- Quantum Description -- Applications -- Drag Force on Ions -- Electron Coolers in Storage Rings -- Diffusion Tensor -- Cooling of Antiprotons and Negatively Charged Ions -- Deceleration in Traps.
In: Springer eBooksSummary: This monograph focusses on the influence of a strong magnetic field on the interactions between charged particles in a many-body system. Two complementary approaches, the binary collision model and the dielectric theory are investigated in both analytical and numerical frameworks. In the binary collision model, the Coulomb interaction between the test and the target particles is screened because of the polarization of the target. In the continuum dielectric theory one considers the interactions between the test particle and its polarization cloud. In the presence of a strong magnetic field, there exists no suitable parameter of smallness. Linearized and perturbative treatments are not more valid and must be replaced by numerical grid or particle methods. Applications include the electron cooling of ion beams in storage rings and the final deceleration of antiprotons and heavy ion beams in traps.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Previous Work, Status and Overview -- Challenges Imposed by the Magnetic Field -- Binary Collision Model (BC), Dielectric Theory (DT) -- Classical Trajectory Monte Carlo (CTMC) Simulations -- Particle in Cell (PIC) Simulations -- Binary Collisions -- Lagrangian Formulation -- Force Formulation -- Velocity Transfer in Second-Order Perturbation Theory -- CTMC -- Dielectric Theory -- Vlasov-Poisson, PIC -- Linearized Dynamic Collective Response -- Conformity of DT and BC in the Linear Regime -- Quantum Description -- Applications -- Drag Force on Ions -- Electron Coolers in Storage Rings -- Diffusion Tensor -- Cooling of Antiprotons and Negatively Charged Ions -- Deceleration in Traps.

This monograph focusses on the influence of a strong magnetic field on the interactions between charged particles in a many-body system. Two complementary approaches, the binary collision model and the dielectric theory are investigated in both analytical and numerical frameworks. In the binary collision model, the Coulomb interaction between the test and the target particles is screened because of the polarization of the target. In the continuum dielectric theory one considers the interactions between the test particle and its polarization cloud. In the presence of a strong magnetic field, there exists no suitable parameter of smallness. Linearized and perturbative treatments are not more valid and must be replaced by numerical grid or particle methods. Applications include the electron cooling of ion beams in storage rings and the final deceleration of antiprotons and heavy ion beams in traps.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu