Amazon cover image
Image from Amazon.com

Macroscopic Matter Wave Interferometry [electronic resource] / by Stefan Nimmrichter.

By: Contributor(s): Series: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublisher: Cham : Springer International Publishing : Imprint: Springer, 2014Description: XIV, 279 p. 38 illus., 18 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319070971
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 530.12 23
LOC classification:
  • QC173.96-174.52
Online resources:
Contents:
Introduction -- Interaction of Polarizable Particles with Light -- Near-Field Interference Techniques with Heavy Molecules and Nanoclusters -- Classicalization and the Macroscopicity of Quantum Superposition States -- Conclusion and Outlook -- Appendix A Light-Matter Interaction -- Appendix B Matter-Wave Interferometry -- Appendix C Classicalization and Macroscopicity.
In: Springer eBooksSummary: Matter‐wave interferometry is a promising and successful way to explore truly macroscopic quantum phenomena and probe the validity of quantum theory at the borderline to the classic world. Indeed, we may soon witness quantum superpositions with nano to micrometer-sized objects. Yet, venturing deeper into the macroscopic domain is not only an experimental but also a theoretical endeavour: new interferometers must be conceived, sources of noise and decoherence identified, size effects understood, and possible modifications of the theory taken into account. This thesis provides the theoretical background to recent advances in molecule and nanoparticle interferometry. In addition, it contains a physical and objective method to assess the degree of macroscopicity of such experiments, ranking them among other macroscopic quantum superposition phenomena.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Interaction of Polarizable Particles with Light -- Near-Field Interference Techniques with Heavy Molecules and Nanoclusters -- Classicalization and the Macroscopicity of Quantum Superposition States -- Conclusion and Outlook -- Appendix A Light-Matter Interaction -- Appendix B Matter-Wave Interferometry -- Appendix C Classicalization and Macroscopicity.

Matter‐wave interferometry is a promising and successful way to explore truly macroscopic quantum phenomena and probe the validity of quantum theory at the borderline to the classic world. Indeed, we may soon witness quantum superpositions with nano to micrometer-sized objects. Yet, venturing deeper into the macroscopic domain is not only an experimental but also a theoretical endeavour: new interferometers must be conceived, sources of noise and decoherence identified, size effects understood, and possible modifications of the theory taken into account. This thesis provides the theoretical background to recent advances in molecule and nanoparticle interferometry. In addition, it contains a physical and objective method to assess the degree of macroscopicity of such experiments, ranking them among other macroscopic quantum superposition phenomena.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu