Amazon cover image
Image from Amazon.com

Advanced Methods in the Fractional Calculus of Variations [electronic resource] / by Agnieszka B. Malinowska, Tatiana Odzijewicz, Delfim F.M. Torres.

By: Contributor(s): Series: SpringerBriefs in Applied Sciences and TechnologyPublisher: Cham : Springer International Publishing : Imprint: Springer, 2015Description: XII, 135 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319147567
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 515.64 23
LOC classification:
  • QA315-316
  • QA402.3
  • QA402.5-QA402.6
Online resources:
Contents:
1. Introduction -- 2. Fractional Calculus -- 3. Fractional Calculus of Variations -- 4. Standard Methods in Fractional Variational Calculus -- 5. Direct Methods in Fractional Calculus of Variations -- 6. Application to the Sturm-Liouville Problem -- 7. Conclusion -- Appendix - Two Convergence Lemmas -- Index.
In: Springer eBooksSummary: This brief presents a general unifying perspective on the fractional calculus. It brings together results of several recent approaches in generalizing the least action principle and the Euler–Lagrange equations to include fractional derivatives. The dependence of Lagrangians on generalized fractional operators as well as on classical derivatives is considered along with still more general problems in which integer-order integrals are replaced by fractional integrals. General theorems are obtained for several types of variational problems for which recent results developed in the literature can be obtained as special cases. In particular, the authors offer necessary optimality conditions of Euler–Lagrange type for the fundamental and isoperimetric problems, transversality conditions, and Noether symmetry theorems. The existence of solutions is demonstrated under Tonelli type conditions. The results are used to prove the existence of eigenvalues and corresponding orthogonal eigenfunctions of fractional Sturm–Liouville problems. Advanced Methods in the Fractional Calculus of Variations is a self-contained text which will be useful for graduate students wishing to learn about fractional-order systems. The detailed explanations will interest researchers with backgrounds in applied mathematics, control and optimization as well as in certain areas of physics and engineering.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1. Introduction -- 2. Fractional Calculus -- 3. Fractional Calculus of Variations -- 4. Standard Methods in Fractional Variational Calculus -- 5. Direct Methods in Fractional Calculus of Variations -- 6. Application to the Sturm-Liouville Problem -- 7. Conclusion -- Appendix - Two Convergence Lemmas -- Index.

This brief presents a general unifying perspective on the fractional calculus. It brings together results of several recent approaches in generalizing the least action principle and the Euler–Lagrange equations to include fractional derivatives. The dependence of Lagrangians on generalized fractional operators as well as on classical derivatives is considered along with still more general problems in which integer-order integrals are replaced by fractional integrals. General theorems are obtained for several types of variational problems for which recent results developed in the literature can be obtained as special cases. In particular, the authors offer necessary optimality conditions of Euler–Lagrange type for the fundamental and isoperimetric problems, transversality conditions, and Noether symmetry theorems. The existence of solutions is demonstrated under Tonelli type conditions. The results are used to prove the existence of eigenvalues and corresponding orthogonal eigenfunctions of fractional Sturm–Liouville problems. Advanced Methods in the Fractional Calculus of Variations is a self-contained text which will be useful for graduate students wishing to learn about fractional-order systems. The detailed explanations will interest researchers with backgrounds in applied mathematics, control and optimization as well as in certain areas of physics and engineering.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu