Amazon cover image
Image from Amazon.com

Algebraic Methods for Nonlinear Control Systems [electronic resource] / by Giuseppe Conte, Claude H. Moog, Anna Maria Perdon.

By: Contributor(s): Series: Communications and Control EngineeringPublisher: London : Springer London, 2007Edition: 2nd EditionDescription: XVI, 178 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781846285950
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 629.8 23
LOC classification:
  • TJ212-225
Online resources:
Contents:
Methodology -- Preliminaries -- Modeling -- Accessibility -- Observability -- Systems Structure and Inversion -- System Transformations -- Applications to Control Problems -- Input-output Linearization -- Noninteracting Control -- Input-state Linearization -- Disturbance Decoupling -- Model Matching -- Measured Output Feedback Control Problems.
In: Springer eBooksSummary: A self-contained introduction to algebraic control for nonlinear systems suitable for researchers and graduate students. The most popular treatment of control for nonlinear systems is from the viewpoint of differential geometry yet this approach proves not to be the most natural when considering problems like dynamic feedback and realization. Professors Conte, Moog and Perdon develop an alternative linear-algebraic strategy based on the use of vector spaces over suitable fields of nonlinear functions. This algebraic perspective is complementary to, and parallel in concept with, its more celebrated differential-geometric counterpart. Algebraic Methods for Nonlinear Control Systems describes a wide range of results, some of which can be derived using differential geometry but many of which cannot. They include: • classical and generalized realization in the nonlinear context; • accessibility and observability recast within the linear-algebraic setting; • discussion and solution of basic feedback problems like input-to-output linearization, input-to-state linearization, non-interacting control and disturbance decoupling; • results for dynamic and static state and output feedback. Dynamic feedback and realization are shown to be dealt with and solved much more easily within the algebraic framework. Originally published as Nonlinear Control Systems, 1-85233-151-8, this second edition has been completely revised with new text – chapters on modeling and systems structure are expanded and that on output feedback added de novo – examples and exercises. The book is divided into two parts: the first being devoted to the necessary methodology and the second to an exposition of applications to control problems.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Methodology -- Preliminaries -- Modeling -- Accessibility -- Observability -- Systems Structure and Inversion -- System Transformations -- Applications to Control Problems -- Input-output Linearization -- Noninteracting Control -- Input-state Linearization -- Disturbance Decoupling -- Model Matching -- Measured Output Feedback Control Problems.

A self-contained introduction to algebraic control for nonlinear systems suitable for researchers and graduate students. The most popular treatment of control for nonlinear systems is from the viewpoint of differential geometry yet this approach proves not to be the most natural when considering problems like dynamic feedback and realization. Professors Conte, Moog and Perdon develop an alternative linear-algebraic strategy based on the use of vector spaces over suitable fields of nonlinear functions. This algebraic perspective is complementary to, and parallel in concept with, its more celebrated differential-geometric counterpart. Algebraic Methods for Nonlinear Control Systems describes a wide range of results, some of which can be derived using differential geometry but many of which cannot. They include: • classical and generalized realization in the nonlinear context; • accessibility and observability recast within the linear-algebraic setting; • discussion and solution of basic feedback problems like input-to-output linearization, input-to-state linearization, non-interacting control and disturbance decoupling; • results for dynamic and static state and output feedback. Dynamic feedback and realization are shown to be dealt with and solved much more easily within the algebraic framework. Originally published as Nonlinear Control Systems, 1-85233-151-8, this second edition has been completely revised with new text – chapters on modeling and systems structure are expanded and that on output feedback added de novo – examples and exercises. The book is divided into two parts: the first being devoted to the necessary methodology and the second to an exposition of applications to control problems.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu