Amazon cover image
Image from Amazon.com

Smooth Ergodic Theory for Endomorphisms [electronic resource] / by Min Qian, Jian-Sheng Xie, Shu Zhu.

By: Contributor(s): Series: Lecture Notes in Mathematics ; 1978Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009Description: XIII, 277 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642019548
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 515.39 23
  • 515.48 23
LOC classification:
  • QA313
Online resources:
Contents:
Preliminaries -- Margulis-Ruelle Inequality -- Expanding Maps -- Axiom A Endomorphisms -- Unstable and Stable Manifolds for Endomorphisms -- Pesin#x2019;s Entropy Formula for Endomorphisms -- SRB Measures and Pesin#x2019;s Entropy Formula for Endomorphisms -- Ergodic Property of Lyapunov Exponents -- Generalized Entropy Formula -- Exact Dimensionality of Hyperbolic Measures.
In: Springer eBooksSummary: This volume presents a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms, mainly concerning the relations between entropy, Lyapunov exponents and dimensions. The authors make extensive use of the combination of the inverse limit space technique and the techniques developed to tackle random dynamical systems. The most interesting results in this book are (1) the equivalence between the SRB property and Pesin’s entropy formula; (2) the generalized Ledrappier-Young entropy formula; (3) exact-dimensionality for weakly hyperbolic diffeomorphisms and for expanding maps. The proof of the exact-dimensionality for weakly hyperbolic diffeomorphisms seems more accessible than that of Barreira et al. It also inspires the authors to argue to what extent the famous Eckmann-Ruelle conjecture and many other classical results for diffeomorphisms and for flows hold true. After a careful reading of the book, one can systematically learn the Pesin theory for endomorphisms as well as the typical tricks played in the estimation of the number of balls of certain properties, which are extensively used in Chapters IX and X.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Preliminaries -- Margulis-Ruelle Inequality -- Expanding Maps -- Axiom A Endomorphisms -- Unstable and Stable Manifolds for Endomorphisms -- Pesin#x2019;s Entropy Formula for Endomorphisms -- SRB Measures and Pesin#x2019;s Entropy Formula for Endomorphisms -- Ergodic Property of Lyapunov Exponents -- Generalized Entropy Formula -- Exact Dimensionality of Hyperbolic Measures.

This volume presents a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms, mainly concerning the relations between entropy, Lyapunov exponents and dimensions. The authors make extensive use of the combination of the inverse limit space technique and the techniques developed to tackle random dynamical systems. The most interesting results in this book are (1) the equivalence between the SRB property and Pesin’s entropy formula; (2) the generalized Ledrappier-Young entropy formula; (3) exact-dimensionality for weakly hyperbolic diffeomorphisms and for expanding maps. The proof of the exact-dimensionality for weakly hyperbolic diffeomorphisms seems more accessible than that of Barreira et al. It also inspires the authors to argue to what extent the famous Eckmann-Ruelle conjecture and many other classical results for diffeomorphisms and for flows hold true. After a careful reading of the book, one can systematically learn the Pesin theory for endomorphisms as well as the typical tricks played in the estimation of the number of balls of certain properties, which are extensively used in Chapters IX and X.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu