Amazon cover image
Image from Amazon.com

Transcendental Numbers [electronic resource] / by M. Ram Murty, Purusottam Rath.

By: Contributor(s): Publisher: New York, NY : Springer New York : Imprint: Springer, 2014Description: XIV, 217 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781493908325
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 512.7 23
LOC classification:
  • QA241-247.5
Online resources:
Contents:
1. Liouville’s theorem -- 2. Hermite’s Theorem -- 3. Lindemann’s theorem -- 4. The Lindemann-Weierstrass theorem -- 5. The maximum modulus principle -- 6. Siegel’s lemma -- 7. The six exponentials theorem -- 8. Estimates for derivatives -- 9. The Schneider-Lang theorem -- 10. Elliptic functions -- 11. Transcendental values of elliptic functions -- 12. Periods and quasiperiods -- 13. Transcendental values of some elliptic integrals -- 14. The modular invariant -- 15. Transcendental values of the j-function -- 16. More elliptic integrals -- 17. Transcendental values of Eisenstein series -- 18. Elliptic integrals and hypergeometric series -- 19. Baker’s theorem -- 20. Some applications of Baker’s theorem -- 21. Schanuel’s conjecture -- 22. Transcendental values of some Dirichlet series -- 23. Proof of the Baker-Birch-Wirsing theorem -- 24. Transcendence of some infinite series -- 25. Linear independence of values of Dirichlet L-functions -- 26. Transcendence of values of modular forms -- 27. Transcendence of values of class group L-functions -- 28. Periods, multiple zeta functions and (3).      .
In: Springer eBooksSummary: This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

1. Liouville’s theorem -- 2. Hermite’s Theorem -- 3. Lindemann’s theorem -- 4. The Lindemann-Weierstrass theorem -- 5. The maximum modulus principle -- 6. Siegel’s lemma -- 7. The six exponentials theorem -- 8. Estimates for derivatives -- 9. The Schneider-Lang theorem -- 10. Elliptic functions -- 11. Transcendental values of elliptic functions -- 12. Periods and quasiperiods -- 13. Transcendental values of some elliptic integrals -- 14. The modular invariant -- 15. Transcendental values of the j-function -- 16. More elliptic integrals -- 17. Transcendental values of Eisenstein series -- 18. Elliptic integrals and hypergeometric series -- 19. Baker’s theorem -- 20. Some applications of Baker’s theorem -- 21. Schanuel’s conjecture -- 22. Transcendental values of some Dirichlet series -- 23. Proof of the Baker-Birch-Wirsing theorem -- 24. Transcendence of some infinite series -- 25. Linear independence of values of Dirichlet L-functions -- 26. Transcendence of values of modular forms -- 27. Transcendence of values of class group L-functions -- 28. Periods, multiple zeta functions and (3).      .

This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu