Amazon cover image
Image from Amazon.com

Soft-switching PWM full-bridge converters : topologies, control, and design / Xinbo Ruan, Nanjing University of Aeronautics and Astronautics, China.

By: Contributor(s): Publisher: Singapore : Wiley/Science Press, 2014Description: 1 online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781118702239 (ePub)
  • 1118702239 (ePub)
  • 9781118702222 (Adobe PDF)
  • 1118702220 (Adobe PDF)
  • 9781118702215
  • 1118702212
  • 1118702204
  • 9781118702208
Subject(s): Genre/Form: Additional physical formats: Print version:: Soft-switching PWM full-bridge convertersLOC classification:
  • TK7872.C8
Online resources:
Contents:
1.4.4.Basic Operating Principle of a Full-Bridge Converter with a Current-Doubler Rectifier Circuit -- 1.5.Summary -- References -- 2.1.PWM Strategies for Full-Bridge Converters -- 2.1.1.Basic PWM Strategy -- 2.1.2.Definition of On-Time of Power Switches -- 2.1.3.A Family of PWM Strategies -- 2.2.Two Types of PWM Strategy -- 2.2.1.The Two Diagonal Power Switches Turn Off Simultaneously -- 2.2.2.The Two Diagonal Power Switches Turn Off in a Staggered Manner -- 2.3.Classification of Soft-Switching PWM Full-Bridge Converters -- 2.4.Summary -- Reference -- 3.1.Topologies and Modulation Strategies of ZVS PWM Full-Bridge Converters -- 3.1.1.Modulation of the Lagging Leg -- 3.1.2.Modulation of the Leading Leg -- 3.1.3.Modulation Strategies of the ZVS PWM Full-Bridge Converters -- 3.2.Operating Principle of ZVS PWM Full-Bridge Converter -- 3.3.ZVS Achievement of Leading and Lagging Legs -- 3.3.1.Condition for Achieving ZVS
3.3.2.Condition for Achieving ZVS for the Leading Leg -- 3.3.3.Condition for Achieving ZVS for the Lagging Leg -- 3.4.Secondary Duty Cycle Loss -- 3.5.Commutation of the Rectifier Diodes -- 3.5.1.Full-Bridge Rectifier -- 3.5.2.Full-Wave Rectifier -- 3.6.Simplified Design Procedure and Example -- 3.6.1.Turn Ratio of Transformer -- 3.6.2.Resonant Inductor -- 3.6.3.Output Filter Inductor and Capacitor -- 3.6.4.Power Devices -- 3.6.5.Load Range of ZVS -- 3.7.Experimental Verification -- 3.8.Summary -- References -- 4.1.Current-Enhancement Principle -- 4.2.Auxiliary-Current-Source Network -- 4.3.Operating Principle of a ZVS PWM Full-Bridge Converter with Auxiliary-Current-Source Network -- 4.4.Conditions for Achieving ZVS in the Lagging Leg -- 4.5.Parameter Design -- 4.5.1.Parameter Selection for the Auxiliary-Current-Source Network -- 4.5.2.Determination of Lr, Cr, and Ic -- 4.5.3.Design Example
4.6.Secondary Duty Cycle Loss and Selection of Dead Time for the Drive Signals of the Lagging Leg -- 4.6.1.Secondary Duty Cycle Loss -- 4.6.2.Selection of Dead Time between Drive Signals of the Lagging Leg -- 4.6.3.Comparison with Full-Bridge Converter with Saturable Inductor -- 4.7.Experimental Verification -- 4.8.Other Auxiliary-Current-Source Networks for ZVS PWM Full-Bridge Converters -- 4.8.1.Auxiliary-Current-Source Networks with Uncontrolled Auxiliary Current Magnitude -- 4.8.2.Auxiliary-Current-Source Networks with Controlled Auxiliary Current Magnitude -- 4.8.3.Auxiliary-Current-Source Network with Auxiliary Current Magnitude Proportional to Primary Duty Cycle -- 4.8.4.Auxiliary-Current-Source Network with Auxiliary Current Magnitude Adaptive to Load Current -- 4.8.5.Auxiliary-Current-Source Networks with Adaptive Resonant Inductor Current -- 4.9.Summary -- References
5.1.Modulation Strategies and Topologies of a ZVZCS PWM Full-Bridge Converter -- 5.1.1.Modulation of the Leading Leg -- 5.1.2.Modulation of the Lagging Leg -- 5.1.3.Modulation Strategies of ZVZCS PWM Full-Bridge Converters -- 5.1.4.Method for Resetting the Primary Current at Zero State -- 5.2.Operating Principle of a ZVZCS PWM Full-Bridge Converter -- 5.3.Theoretical Analysis -- 5.3.1.Peak Voltage of the Block Capacitor -- 5.3.2.Achieving ZVS for the Leading Leg -- 5.3.3.Maximum Effective Duty Cycle -- 5.3.4.Achieving ZCS for the Lagging Leg -- 5.3.5.Voltage Stress of the Lagging Leg -- 5.3.6.Blocking Capacitor -- 5.4.Simplified Design Procedure and Example -- 5.4.1.Transformer Winding-Turns Ratio -- 5.4.2.Calculation of Blocking Capacitance -- 5.4.3.Verification of the Transformer Turns Ratio and Blocking Capacitance -- 5.4.4.Dead Time between the Gate Drive Signals of the Leading Leg -- 5.5.Experimental Verification -- 5.6.Summary -- References
6.1.Introduction -- 6.2.Causes of Voltage Oscillation in the Output Rectifier Diode in ZVS PWM Full-Bridge Converters -- 6.3.Voltage Oscillation Suppression Approaches -- 6.3.1.RC Snubber -- 6.3.2.RCD Snubber -- 6.3.3.Active Clamp Circuit -- 6.3.4.Auxiliary Winding of Transformer and Clamping Diode Circuit -- 6.3.5.Clamping Diode Circuit -- 6.4.Operating Principle of the Tr-Lead-Type ZVS PWM Full-Bridge Converter -- 6.5.Operating Principle of the Tr-Lag-Type ZVS PWM Full-Bridge Converter -- 6.6.Comparisons of Tr-Lead-Type and Tr-Lag-Type ZVS PWM Full-Bridge Converters -- 6.6.1.Clamping Diode Conduction Times -- 6.6.2.Achievement of ZVS -- 6.6.3.Conduction Loss in Zero State -- 6.6.4.Duty Cycle Loss -- 6.6.5.Effect of the Blocking Capacitor -- 6.7.Experimental Verification -- 6.8.Summary -- References -- 7.1.Introduction -- 7.2.Operating Principle of the ZVS PWM Full-Bridge Converter with Clamping Diodes under Light Load Conditions
7.2.1.Case I: 0.5Vin/Zr1 < ILf(t1)/K < Vin/Zr1 (Referring to Figure 7.2a) -- 7.2.2.Case II: ILf/(t1)/K < 0.5Vin/4r1 (Referring to Figure 7.2b) -- 7.3.Clamping Diode Current-Reset Scheme -- 7.3.1.Reset Voltage Source -- 7.3.2.Implementation of the Reset Voltage Source -- 7.4.Operating Principle of the ZVS PWM Full-Bridge Converter with Current Transformer -- 7.4.1.Operating Principle under Heavy Load Conditions -- 7.4.2.Operating Principle under Light Load Conditions -- 7.5.Choice of Current Transformer Winding-Turns Ratio -- 7.5.1.Clamping Diode Current-Reset Time -- 7.5.2.Output Rectifier Diode Voltage Stress -- 7.5.3.Current Transformer Winding-Turns Ratio -- 7.6.Experimental Verification -- 7.7.Summary -- References -- 8.1.Operating Principle -- 8.2.Realization of ZVS for the Switches -- 8.3.Design Considerations -- 8.3.1.Transformer Winding-Turns Ratio -- 8.3.2.Output Filter Inductance -- 8.3.3.Blocking Capacitor -- 8.4.Experimental Verification
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Includes bibliographical references and index.

1.4.4.Basic Operating Principle of a Full-Bridge Converter with a Current-Doubler Rectifier Circuit -- 1.5.Summary -- References -- 2.1.PWM Strategies for Full-Bridge Converters -- 2.1.1.Basic PWM Strategy -- 2.1.2.Definition of On-Time of Power Switches -- 2.1.3.A Family of PWM Strategies -- 2.2.Two Types of PWM Strategy -- 2.2.1.The Two Diagonal Power Switches Turn Off Simultaneously -- 2.2.2.The Two Diagonal Power Switches Turn Off in a Staggered Manner -- 2.3.Classification of Soft-Switching PWM Full-Bridge Converters -- 2.4.Summary -- Reference -- 3.1.Topologies and Modulation Strategies of ZVS PWM Full-Bridge Converters -- 3.1.1.Modulation of the Lagging Leg -- 3.1.2.Modulation of the Leading Leg -- 3.1.3.Modulation Strategies of the ZVS PWM Full-Bridge Converters -- 3.2.Operating Principle of ZVS PWM Full-Bridge Converter -- 3.3.ZVS Achievement of Leading and Lagging Legs -- 3.3.1.Condition for Achieving ZVS

3.3.2.Condition for Achieving ZVS for the Leading Leg -- 3.3.3.Condition for Achieving ZVS for the Lagging Leg -- 3.4.Secondary Duty Cycle Loss -- 3.5.Commutation of the Rectifier Diodes -- 3.5.1.Full-Bridge Rectifier -- 3.5.2.Full-Wave Rectifier -- 3.6.Simplified Design Procedure and Example -- 3.6.1.Turn Ratio of Transformer -- 3.6.2.Resonant Inductor -- 3.6.3.Output Filter Inductor and Capacitor -- 3.6.4.Power Devices -- 3.6.5.Load Range of ZVS -- 3.7.Experimental Verification -- 3.8.Summary -- References -- 4.1.Current-Enhancement Principle -- 4.2.Auxiliary-Current-Source Network -- 4.3.Operating Principle of a ZVS PWM Full-Bridge Converter with Auxiliary-Current-Source Network -- 4.4.Conditions for Achieving ZVS in the Lagging Leg -- 4.5.Parameter Design -- 4.5.1.Parameter Selection for the Auxiliary-Current-Source Network -- 4.5.2.Determination of Lr, Cr, and Ic -- 4.5.3.Design Example

4.6.Secondary Duty Cycle Loss and Selection of Dead Time for the Drive Signals of the Lagging Leg -- 4.6.1.Secondary Duty Cycle Loss -- 4.6.2.Selection of Dead Time between Drive Signals of the Lagging Leg -- 4.6.3.Comparison with Full-Bridge Converter with Saturable Inductor -- 4.7.Experimental Verification -- 4.8.Other Auxiliary-Current-Source Networks for ZVS PWM Full-Bridge Converters -- 4.8.1.Auxiliary-Current-Source Networks with Uncontrolled Auxiliary Current Magnitude -- 4.8.2.Auxiliary-Current-Source Networks with Controlled Auxiliary Current Magnitude -- 4.8.3.Auxiliary-Current-Source Network with Auxiliary Current Magnitude Proportional to Primary Duty Cycle -- 4.8.4.Auxiliary-Current-Source Network with Auxiliary Current Magnitude Adaptive to Load Current -- 4.8.5.Auxiliary-Current-Source Networks with Adaptive Resonant Inductor Current -- 4.9.Summary -- References

5.1.Modulation Strategies and Topologies of a ZVZCS PWM Full-Bridge Converter -- 5.1.1.Modulation of the Leading Leg -- 5.1.2.Modulation of the Lagging Leg -- 5.1.3.Modulation Strategies of ZVZCS PWM Full-Bridge Converters -- 5.1.4.Method for Resetting the Primary Current at Zero State -- 5.2.Operating Principle of a ZVZCS PWM Full-Bridge Converter -- 5.3.Theoretical Analysis -- 5.3.1.Peak Voltage of the Block Capacitor -- 5.3.2.Achieving ZVS for the Leading Leg -- 5.3.3.Maximum Effective Duty Cycle -- 5.3.4.Achieving ZCS for the Lagging Leg -- 5.3.5.Voltage Stress of the Lagging Leg -- 5.3.6.Blocking Capacitor -- 5.4.Simplified Design Procedure and Example -- 5.4.1.Transformer Winding-Turns Ratio -- 5.4.2.Calculation of Blocking Capacitance -- 5.4.3.Verification of the Transformer Turns Ratio and Blocking Capacitance -- 5.4.4.Dead Time between the Gate Drive Signals of the Leading Leg -- 5.5.Experimental Verification -- 5.6.Summary -- References

6.1.Introduction -- 6.2.Causes of Voltage Oscillation in the Output Rectifier Diode in ZVS PWM Full-Bridge Converters -- 6.3.Voltage Oscillation Suppression Approaches -- 6.3.1.RC Snubber -- 6.3.2.RCD Snubber -- 6.3.3.Active Clamp Circuit -- 6.3.4.Auxiliary Winding of Transformer and Clamping Diode Circuit -- 6.3.5.Clamping Diode Circuit -- 6.4.Operating Principle of the Tr-Lead-Type ZVS PWM Full-Bridge Converter -- 6.5.Operating Principle of the Tr-Lag-Type ZVS PWM Full-Bridge Converter -- 6.6.Comparisons of Tr-Lead-Type and Tr-Lag-Type ZVS PWM Full-Bridge Converters -- 6.6.1.Clamping Diode Conduction Times -- 6.6.2.Achievement of ZVS -- 6.6.3.Conduction Loss in Zero State -- 6.6.4.Duty Cycle Loss -- 6.6.5.Effect of the Blocking Capacitor -- 6.7.Experimental Verification -- 6.8.Summary -- References -- 7.1.Introduction -- 7.2.Operating Principle of the ZVS PWM Full-Bridge Converter with Clamping Diodes under Light Load Conditions

7.2.1.Case I: 0.5Vin/Zr1 < ILf(t1)/K < Vin/Zr1 (Referring to Figure 7.2a) -- 7.2.2.Case II: ILf/(t1)/K < 0.5Vin/4r1 (Referring to Figure 7.2b) -- 7.3.Clamping Diode Current-Reset Scheme -- 7.3.1.Reset Voltage Source -- 7.3.2.Implementation of the Reset Voltage Source -- 7.4.Operating Principle of the ZVS PWM Full-Bridge Converter with Current Transformer -- 7.4.1.Operating Principle under Heavy Load Conditions -- 7.4.2.Operating Principle under Light Load Conditions -- 7.5.Choice of Current Transformer Winding-Turns Ratio -- 7.5.1.Clamping Diode Current-Reset Time -- 7.5.2.Output Rectifier Diode Voltage Stress -- 7.5.3.Current Transformer Winding-Turns Ratio -- 7.6.Experimental Verification -- 7.7.Summary -- References -- 8.1.Operating Principle -- 8.2.Realization of ZVS for the Switches -- 8.3.Design Considerations -- 8.3.1.Transformer Winding-Turns Ratio -- 8.3.2.Output Filter Inductance -- 8.3.3.Blocking Capacitor -- 8.4.Experimental Verification

John Wiley and Sons Wiley eBooks

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu