Amazon cover image
Image from Amazon.com

Energy Transmission and Synchronization in Complex Networks [electronic resource] : Mathematical Principles / by Nicolás Rubido.

By: Contributor(s): Series: Springer Theses, Recognizing Outstanding Ph.D. ResearchPublisher: Cham : Springer International Publishing : Imprint: Springer, 2016Edition: 1st ed. 2016Description: XVII, 117 p. 32 illus., 14 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319222165
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 621 23
LOC classification:
  • QC1-QC999
Online resources:
Contents:
Introduction -- Complex Networks -- Transmission of Energy -- Synchronisation -- General conclusions.
In: Springer eBooksSummary: This work tackles the problems of understanding how energy is transmitted and distributed in power-grids as well as in determining how robust this transmission and distribution is when modifications to the grid or power occur. The most important outcome is the derivation of explicit relationships between the structure of the grid, the optimal transmission and distribution of energy, and the grid’s collective behavior (namely, the synchronous generation of power). These relationships are extremely relevant for the design of resilient power-grid models. To allow the reader to apply these results to other complex systems, the thesis includes a review of relevant aspects of network theory, spectral theory, and novel analytical calculations to predict the existence and stability of periodic collective behavior in complex networks of phase oscillators, which constitute a paradigmatic model for many complex systems.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction -- Complex Networks -- Transmission of Energy -- Synchronisation -- General conclusions.

This work tackles the problems of understanding how energy is transmitted and distributed in power-grids as well as in determining how robust this transmission and distribution is when modifications to the grid or power occur. The most important outcome is the derivation of explicit relationships between the structure of the grid, the optimal transmission and distribution of energy, and the grid’s collective behavior (namely, the synchronous generation of power). These relationships are extremely relevant for the design of resilient power-grid models. To allow the reader to apply these results to other complex systems, the thesis includes a review of relevant aspects of network theory, spectral theory, and novel analytical calculations to predict the existence and stability of periodic collective behavior in complex networks of phase oscillators, which constitute a paradigmatic model for many complex systems.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu