Amazon cover image
Image from Amazon.com

Theory of Zipf's Law and Beyond [electronic resource] / by Alex Saichev, Yannick Malevergne, Didier Sornette.

By: Contributor(s): Series: Lecture Notes in Economics and Mathematical Systems ; 632Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010Description: XII, 171 p. 44 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642029462
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 339 23
LOC classification:
  • HB172.5
Online resources:
Contents:
Continuous Gibrat#x2019;s Law and Gabaix#x2019;s Derivation of Zipf#x2019;s Law -- Flow of Firm Creation -- Useful Properties of Realizations of the Geometric Brownian Motion -- Exit or #x201C;Death#x201D; of Firms -- Deviations from Gibrat#x2019;s Law and Implications for Generalized Zipf#x2019;s Laws -- Firm#x2019;s Sudden Deaths -- Non-stationary Mean Birth Rate -- Properties of the Realization Dependent Distribution of Firm Sizes -- Future Directions and Conclusions.
In: Springer eBooksSummary: Zipf's law is one of the few quantitative reproducible regularities found in economics. It states that, for most countries, the size distributions of city sizes and of firms are power laws with a specific exponent: the number of cities and of firms with sizes greater than S is inversely proportional to S. Zipf's law also holds in many other scientific fields. Most explanations start with Gibrat's law of proportional growth (also known as "preferential attachment'' in the application to network growth) but need to incorporate additional constraints and ingredients introducing deviations from it. This book presents a general theoretical derivation of Zipf's law, providing a synthesis and extension of previous approaches. The general theory is presented in the language of firm dynamics for the sake of convenience but applies to many other systems. It takes into account (i) time-varying firm creation, (ii) firm's exit resulting from both a lack of sufficient capital and sudden external shocks, (iii) the coupling between firm's birth rate and the growth of the value of the population of firms. The robustness of Zipf's law is understood from the approximate validity of a general balance condition. A classification of the mechanisms responsible for deviations from Zipf's law is also offered.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Continuous Gibrat#x2019;s Law and Gabaix#x2019;s Derivation of Zipf#x2019;s Law -- Flow of Firm Creation -- Useful Properties of Realizations of the Geometric Brownian Motion -- Exit or #x201C;Death#x201D; of Firms -- Deviations from Gibrat#x2019;s Law and Implications for Generalized Zipf#x2019;s Laws -- Firm#x2019;s Sudden Deaths -- Non-stationary Mean Birth Rate -- Properties of the Realization Dependent Distribution of Firm Sizes -- Future Directions and Conclusions.

Zipf's law is one of the few quantitative reproducible regularities found in economics. It states that, for most countries, the size distributions of city sizes and of firms are power laws with a specific exponent: the number of cities and of firms with sizes greater than S is inversely proportional to S. Zipf's law also holds in many other scientific fields. Most explanations start with Gibrat's law of proportional growth (also known as "preferential attachment'' in the application to network growth) but need to incorporate additional constraints and ingredients introducing deviations from it. This book presents a general theoretical derivation of Zipf's law, providing a synthesis and extension of previous approaches. The general theory is presented in the language of firm dynamics for the sake of convenience but applies to many other systems. It takes into account (i) time-varying firm creation, (ii) firm's exit resulting from both a lack of sufficient capital and sudden external shocks, (iii) the coupling between firm's birth rate and the growth of the value of the population of firms. The robustness of Zipf's law is understood from the approximate validity of a general balance condition. A classification of the mechanisms responsible for deviations from Zipf's law is also offered.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu