Amazon cover image
Image from Amazon.com

Averaging Methods in Nonlinear Dynamical Systems [electronic resource] / by Jan A. Sanders, Ferdinand Verhulst, James Murdock.

By: Contributor(s): Series: Applied Mathematical Sciences ; 59Publisher: New York, NY : Springer New York, 2007Description: XXIV, 434 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780387489186
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 515.39 23
  • 515.48 23
LOC classification:
  • QA313
Online resources:
Contents:
Basic Material and Asymptotics -- Averaging: the Periodic Case -- Methodology of Averaging -- Averaging: the General Case -- Attraction -- Periodic Averaging and Hyperbolicity -- Averaging over Angles -- Passage Through Resonance -- From Averaging to Normal Forms -- Hamiltonian Normal Form Theory -- Classical (First-Level) Normal Form Theory -- Nilpotent (Classical) Normal Form -- Higher-Level Normal Form Theory -- The History of the Theory of Averaging -- A 4-Dimensional Example of Hopf Bifurcation -- Invariant Manifolds by Averaging -- Some Elementary Exercises in Celestial Mechanics -- On Averaging Methods for Partial Differential Equations.
In: Springer eBooksSummary: Perturbation theory and in particular normal form theory has shown strong growth during the last decades. So it is not surprising that the authors have presented an extensive revision of the first edition of the Averaging Methods in Nonlinear Dynamical Systems book. There are many changes, corrections and updates in chapters on Basic Material and Asymptotics, Averaging, and Attraction. Chapters on Periodic Averaging and Hyperbolicity, Classical (first level) Normal Form Theory, Nilpotent (classical) Normal Form, and Higher Level Normal Form Theory are entirely new and represent new insights in averaging, in particular its relation with dynamical systems and the theory of normal forms. Also new are surveys on invariant manifolds in Appendix C and averaging for PDEs in Appendix E. Since the first edition, the book has expanded in length and the third author, James Murdock has been added. Review of First Edition "One of the most striking features of the book is the nice collection of examples, which range from the very simple to some that are elaborate, realistic, and of considerable practical importance. Most of them are presented in careful detail and are illustrated with profuse, illuminating diagrams." - Mathematical Reviews.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Basic Material and Asymptotics -- Averaging: the Periodic Case -- Methodology of Averaging -- Averaging: the General Case -- Attraction -- Periodic Averaging and Hyperbolicity -- Averaging over Angles -- Passage Through Resonance -- From Averaging to Normal Forms -- Hamiltonian Normal Form Theory -- Classical (First-Level) Normal Form Theory -- Nilpotent (Classical) Normal Form -- Higher-Level Normal Form Theory -- The History of the Theory of Averaging -- A 4-Dimensional Example of Hopf Bifurcation -- Invariant Manifolds by Averaging -- Some Elementary Exercises in Celestial Mechanics -- On Averaging Methods for Partial Differential Equations.

Perturbation theory and in particular normal form theory has shown strong growth during the last decades. So it is not surprising that the authors have presented an extensive revision of the first edition of the Averaging Methods in Nonlinear Dynamical Systems book. There are many changes, corrections and updates in chapters on Basic Material and Asymptotics, Averaging, and Attraction. Chapters on Periodic Averaging and Hyperbolicity, Classical (first level) Normal Form Theory, Nilpotent (classical) Normal Form, and Higher Level Normal Form Theory are entirely new and represent new insights in averaging, in particular its relation with dynamical systems and the theory of normal forms. Also new are surveys on invariant manifolds in Appendix C and averaging for PDEs in Appendix E. Since the first edition, the book has expanded in length and the third author, James Murdock has been added. Review of First Edition "One of the most striking features of the book is the nice collection of examples, which range from the very simple to some that are elaborate, realistic, and of considerable practical importance. Most of them are presented in careful detail and are illustrated with profuse, illuminating diagrams." - Mathematical Reviews.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu