Amazon cover image
Image from Amazon.com

Basics of Applied Stochastic Processes [electronic resource] / by Richard Serfozo.

By: Contributor(s): Series: Probability and Its ApplicationsPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009Description: XIV, 443 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540893325
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 519.2 23
LOC classification:
  • QA273.A1-274.9
  • QA274-274.9
Online resources:
Contents:
Markov Chains -- Renewal and Regenerative Processes -- Poisson Processes -- Continuous-Time Markov Chains -- Brownian Motion.
In: Springer eBooksSummary: Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes. Intended readers are researchers and graduate students in mathematics, statistics, operations research, computer science, engineering, and business.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Markov Chains -- Renewal and Regenerative Processes -- Poisson Processes -- Continuous-Time Markov Chains -- Brownian Motion.

Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes. Intended readers are researchers and graduate students in mathematics, statistics, operations research, computer science, engineering, and business.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu