Amazon cover image
Image from Amazon.com

Spectral Methods in Chemistry and Physics [electronic resource] : Applications to Kinetic Theory and Quantum Mechanics / by Bernard Shizgal.

By: Contributor(s): Series: Scientific ComputationPublisher: Dordrecht : Springer Netherlands : Imprint: Springer, 2015Description: XVII, 415 p. 102 illus., 2 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9789401794541
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 530.1 23
LOC classification:
  • QC19.2-20.85
Online resources:
Contents:
Preface -- Introduction to Spectral/Pseudospectral Methods -- Polynomial Basis functions and Quadratures.- Numerical Evaluation of Integrals and Derivatives -- Representation of Functions in Basis Sets -- Integral Equations in the Kinetic Theory of Gases and Related Topics -- Spectral and Pseudospectral Methods of Solution of the Fokker-Planck and Schrödinger Equations -- Index.
In: Springer eBooksSummary: This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficients in gases and other gas dynamical problems based on spectral and pseudospectral solutions of the Boltzmann equation. Radiative transfer in astrophysics and atmospheric science, and applications to space physics are discussed.  The relaxation of initial non-equilibrium distributions to equilibrium for several different systems is studied with the Boltzmann and Fokker-Planck equations. The eigenvalue spectra of the linear operators in the Boltzmann, Fokker-Planck and Schrödinger equations are studied with spectral and pseudospectral methods based on non-classical orthogonal polynomials. The numerical methods referred to as the Discrete Ordinate Method, Differential Quadrature, the Quadrature Discretization Method, the Discrete Variable Representation, the Lagrange Mesh Method, and others are discussed and compared. MATLAB codes are provided for most of the numerical results reported in the book.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Preface -- Introduction to Spectral/Pseudospectral Methods -- Polynomial Basis functions and Quadratures.- Numerical Evaluation of Integrals and Derivatives -- Representation of Functions in Basis Sets -- Integral Equations in the Kinetic Theory of Gases and Related Topics -- Spectral and Pseudospectral Methods of Solution of the Fokker-Planck and Schrödinger Equations -- Index.

This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficients in gases and other gas dynamical problems based on spectral and pseudospectral solutions of the Boltzmann equation. Radiative transfer in astrophysics and atmospheric science, and applications to space physics are discussed.  The relaxation of initial non-equilibrium distributions to equilibrium for several different systems is studied with the Boltzmann and Fokker-Planck equations. The eigenvalue spectra of the linear operators in the Boltzmann, Fokker-Planck and Schrödinger equations are studied with spectral and pseudospectral methods based on non-classical orthogonal polynomials. The numerical methods referred to as the Discrete Ordinate Method, Differential Quadrature, the Quadrature Discretization Method, the Discrete Variable Representation, the Lagrange Mesh Method, and others are discussed and compared. MATLAB codes are provided for most of the numerical results reported in the book.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu