Amazon cover image
Image from Amazon.com

Functional Coherence of Molecular Networks in Bioinformatics [electronic resource] / edited by Mehmet Koyutürk, Shankar Subramaniam, Ananth Grama.

Contributor(s): Publisher: New York, NY : Springer New York, 2012Description: X, 228 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781461403203
Subject(s): Genre/Form: Additional physical formats: Printed edition:: No titleDDC classification:
  • 570 23
LOC classification:
  • QH301-705
Online resources:
Contents:
Introduction to Network Biology -- Topological Characteristics of Molecular Networks -- Functional Annotation in Gene Networks -- Proteome Network Emulating Models -- Biological Network Alignment -- Pattern Mining across many Massive Biological Networks -- Molecular Networks and Complex Diseases -- Moving Towards Genome-Scale Kinetic Models: The Mass Action Stoichiometric Simulation Approach -- Index.
In: Springer eBooksSummary: A fundamental problem in life sciences is the characterization of biological function. In medical sciences, understanding the bases of functional anomalies holds the key to effective diagnosis, treatment,  and prognosis; in genetics, functional annotation of genetic variability uncovers the complex relationship between genotype and phenotype; in evolutionary biology, functional differences between diverse organisms highlight the evolutionary mechanisms that underlie the complexity of biological systems. With the successful completion of the human genome project and recent technological advances in biological data collection, it has become possible to study biological function from a systems perspective. Today, Systems Biology is established as a fundamental interdisciplinary science, which focuses on systematic study of the complex mechanisms that orchestrate the cooperation between diverse molecules that compose life. In the study of biological systems, the complex interactions between biomolecules are often abstracted using network models. Molecular networks provide descriptions of the organization of various biological processes, including cellular signaling, metabolism, and genetic regulation. Knowledge on molecular networks provides the basis for systems level analysis of biological function. Research and method development for such analyses has grown tremendously in the past few years. This volume provides a detailed overview of existing knowledge on the functional characterization of biological networks. In eight chapters authored by an international group of systems biology and bioinformatics researchers, functional coherence of molecular networks is comprehensively explored from various perspectives, including network topology, modularity, functional inference, evolution, phenotype, disease, network dynamics, and molecular kinetics.
Item type: eBooks
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Introduction to Network Biology -- Topological Characteristics of Molecular Networks -- Functional Annotation in Gene Networks -- Proteome Network Emulating Models -- Biological Network Alignment -- Pattern Mining across many Massive Biological Networks -- Molecular Networks and Complex Diseases -- Moving Towards Genome-Scale Kinetic Models: The Mass Action Stoichiometric Simulation Approach -- Index.

A fundamental problem in life sciences is the characterization of biological function. In medical sciences, understanding the bases of functional anomalies holds the key to effective diagnosis, treatment,  and prognosis; in genetics, functional annotation of genetic variability uncovers the complex relationship between genotype and phenotype; in evolutionary biology, functional differences between diverse organisms highlight the evolutionary mechanisms that underlie the complexity of biological systems. With the successful completion of the human genome project and recent technological advances in biological data collection, it has become possible to study biological function from a systems perspective. Today, Systems Biology is established as a fundamental interdisciplinary science, which focuses on systematic study of the complex mechanisms that orchestrate the cooperation between diverse molecules that compose life. In the study of biological systems, the complex interactions between biomolecules are often abstracted using network models. Molecular networks provide descriptions of the organization of various biological processes, including cellular signaling, metabolism, and genetic regulation. Knowledge on molecular networks provides the basis for systems level analysis of biological function. Research and method development for such analyses has grown tremendously in the past few years. This volume provides a detailed overview of existing knowledge on the functional characterization of biological networks. In eight chapters authored by an international group of systems biology and bioinformatics researchers, functional coherence of molecular networks is comprehensively explored from various perspectives, including network topology, modularity, functional inference, evolution, phenotype, disease, network dynamics, and molecular kinetics.

Copyright © 2020 Alfaisal University Library. All Rights Reserved.
Tel: +966 11 2158948 Fax: +966 11 2157910 Email:
librarian@alfaisal.edu